首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of ultraviolet (UV) radiation and copper (Cu) on apical segments of Pterocladiella capillacea was examined under two different conditions of radiation, PAR (control) and PAR+UVA+UVB (PAR+UVAB), and three copper concentrations, ranging from 0 (control) to 0.62, 1.25 and 2.50 μm . Algae were exposed in vitro to photosynthetically active radiation (PAR) at 70 μmol photons m?2 s?1, PAR + UVB at 0.35 W m?2 and PAR +UVA at 0.70 W m?2 during a 12‐h photocycle for 3 h each day for 7 days. The effects of radiation and copper on growth rates, content of photosynthetic pigments and photosynthetic performance were analyzed. In addition, samples were processed for light and transmission electron microscopy. The content of photosynthetic pigments decreased after exposure to radiation and Cu. Compared with PAR radiation and copper treatments modified the kinetics patterns of the photosynthesis/irradiance curve. The treatments also caused changes in the ultrastructure of cortical and subcortical cells, including increased cell wall thickness and accumulation of plastoglobuli, as well as changes in the organization of chloroplasts. The results indicate that the synergistic interaction between UV radiation and Cu in P. capillacea, led to the failure of protective mechanisms and causing more drastic changes and cellular imbalances.  相似文献   

2.
The photoacclimation responses of the brown macroalga Sargassum cymosum were studied to determine its cytochemical and ultrastructural organization, as well as photosynthetic pigments and performance. S. cymosum was cultivated in three salinities (30, 35 and 40 psu) under four irradiation treatments: PAR‐only, PAR + UVA, PAR + UVB and PAR + UVA + UVB. Plants were exposed to PAR at 70 μmol photons m?2 s?1, PAR + UVB at 0.35 W m?2 and PAR +UVA at 0.70 W m?2 for 3 h per day during 7 days in vitro. Growth rate was not significantly affected by any type of radiation or salinity. The amount of pigments in S. cymosum was significantly influenced by the interaction of salinity and radiation treatments. Compared with PAR‐only, UVR treatments modified the kinetics patterns of the photosynthesis/irradiance curve. After exposure to UVR, S. cymosum increased cell wall thickness and the presence of phenolic compounds. The number of mitochondria increased, whereas the number of chloroplasts showed few changes. Although S. cymosum showed insensitivity to changes in salinity, it can be concluded that samples treated under four irradiation regimes showed structural changes, which were more evident, but not severe, under PAR + UVB treatment.  相似文献   

3.
The variation characteristics of Ultraviolet‐B (UVB; 280–315 nm) radiation over Beijing were explored using measured data that were collected in Beijing from November 2010 to October 2011. Seasonal variations in UVB radiation and influence of ozone and clearness index on the ratio of UVB to broadband solar radiation (G) were investigated. The annual value of UVB radiation in Beijing is 6.37 MJ m?2, and monthly average value ranges from 4.96 to 28.37 kJ m?2 d?1. The maximum daily total UVB radiation ranges from 6.55 kJ m?2 d?1 in November to 54.22 kJ m?2 d?1 in July. The monthly minimum of daily total UVB radiation varies from 0.5 kJ m?2 d?1 in February to 11.52 kJ m?2 d?1 in July. The monthly average of the ratio of UVB radiation to G ranges from 0.007 to 0.017%, with an annual average value of 0.012%. The variation in slant ozone column causes annual cycle of the ratio UVB radiation to G, with maximum value in summer. In addition, clouds have a greater effect on G than UVB radiation. Thus, the ratio increases by more than 17% when the atmospheric conditions change from clear to cloudy.  相似文献   

4.
This article reported UV‐B radiation effects on biochemical traits in postharvest flowers of chrysanthemum. The experiment included six levels of UV‐B radiation (UV0, 0 μW cm?2; UV50, 50 μW cm?2; UV200, 200 μW cm?2; UV400, 400 μW cm?2; UV600, 600 μW cm?2 and UV800, 800 μW cm?2). Enhanced UV‐B radiation significantly increased hydrogen peroxide content (except for UV50), but did not evidently affect malondialdehyde content in flowers. Chlorophyll b and total chlorophyll content were significantly increased by UV600 and UV800. UV400 and UV600 significantly increased anthocyanins, carotenoids and UV‐B absorbing compounds content, and the activities of phenylalanine ammonia lyase (PAL) and cinnamic acid‐4‐hydroxylase (C4H) over the control. 4‐coumarate CoA ligase (4CL) activity was significantly decreased by enhanced UV‐B radiation (except for UV50). The relationships between UV‐B radiation intensities and the activities of secondary metabolism enzymes were best described by a second‐order polynomial. The R2 values for UV‐B radiation intensities and the activities of PAL, C4H and 4CL were 0.8361, 0.5437 and 0.8025, respectively. The results indicated that enhanced UV‐B radiation could promote secondary metabolism processes in postharvest flowers, which might be beneficial for the accumulation of medically active ingredients in medicinal plants. The optimal UV‐B radiation intensities in the study were between UV400‐UV600.  相似文献   

5.
Ultraviolet-B (UVB;280–320 nm) radiation is a small but biologically significant portion of the solar spectrum reaching the earth's surface. Research interests have been fostered because UVB has been increasing in recent years due to depletion of stratospheric ozone. Ultraviolet-B that penetrates into plant tissue may damage important cellular macromolecules. Although there has been considerable research on the effects of UVB on plants, the influence of the level of photosynthetically active radiation (PAR;400–700 nm) on effects of UVB requires further definition as a prelude to studies of UVB sensitivity and defense mechanisms. Arabidopsis thaliana wildtype ecotype Landsberg erecta (LER), which is relatively insensitive to UVB, and the relatively sensitive LER-based mutant transparent testa-5 (tt5), were grown under 100 or 250 μmol m?2 s?1 PAR and then exposed to O or 7 kJ m?2 day ?1 UVBBE under these PAR levels. Plants exposed to UVB had reduced dry weight and leaf area and higher levels of UV-absorbing compounds in leaf tissue. The level of PAR did influence the effects of UVB, with the higher level of PAR prior to UVB exposure reducing sensitivity of LER to UVB. In contrast to other studies, higher PAR supplied simultaneously with UVB increased rather than decreased sensitivity of both genotypes to UVB. These results demonstrate the importance of controlling and comparing PAR levels when undertaking studies of UVB sensitivity, as effects of UVB on plants are influenced by the PAR levels plants are growing under prior to and during exposure to UVB.  相似文献   

6.
This study demonstrates that UV radiation (UVR) reduces the photoprotective capacity of the diatom Phaeodactylum tricornutum by affecting xanthophyll cycle (XC) activity. The short‐term reduction of photosystem II (PSII) maximum efficiency of charge separation (Fv/Fm) in cells exposed to UVR could be explained mainly by a reduced photoprotective capacity under this condition. Phaeodactylum tricornutum cells acclimated to two different photosynthetically active radiation (PAR) intensities, high light (HL, 200 μmol quanta m?2 s?1) and low light (LL, 50 μmol quanta m?2 s?1), were exposed to saturating irradiance (1100 μmol quanta m?2 s?1) in the presence (PAR + UVR) and absence of UVR (PAR). HL cells exhibited a greater reduction in Fv/Fm in PAR + UVR when compared with the PAR treatment that was related to a reduction in the de‐epoxidation of XC pigments. In contrast, in LL cells, UVR did not considerably affect XC de‐epoxidation even though the reduction in Fv/Fm was greater than in HL cells. The negative effect of UVR on photoprotection was more pronounced in HL cells because they synthesized more XC pigments than LL cells. This was confirmed when XC activity was blocked with dithiothreitol and when PSII repair was inhibited with chloramphenicol (CAP). The differential reduction of Fv/Fm between PAR + UVR and PAR treatments disappeared when XC was blocked in HL cells. A higher reduction and an incomplete recovery of Fv/Fm were observed in cells incubated with CAP in the presence of UVR. Such responses confirm that UVR had a negative effect on photoprotective mechanisms causing an enhancement of damage by PAR, especially in HL‐acclimated cells in which heat dissipation is important for PSII regulation.  相似文献   

7.
The effect of different wavebands of artificial UV (UVB and UVA) and photosynthetically active radiation (PAR) was assessed in two species of the genus Ulva, U. olivascens and U. rotundata, from southern Spain in order to test for possible differences in acclimation of photosynthesis. Both species share similar morphology but are subject to different light environments: U. rotundata is an estuarine alga, inhabiting subtidal locations, while U. olivascens is an intertidal, sun-adapted organism. Algae were exposed to three different UV conditions, PAR+UVA+UVB, PAR+UVA and PAR for 7 d. Short-term exposure (6 h) was also carried out, using two PAR levels, 150 and 700 micromolm(-2)s(-1). Pigment contents and photosynthesis vs. irradiance curves from oxygen evolution were used to contrast sun- and shade adaptation between these species. O2-based net photosynthesis (Pmax) and PAM-chlorophyll fluorescence (optimal quantum yield, Fv/Fm) were used as parameters to evaluate photoinhibition of photosynthesis in the experiments. The results underline different photobiological characteristics among species: the subtidal U. rotundata had higher contents of pigments (Chl a, Chl b and carotenoids) than the sun-adapted U. olivascens, which resulted in higher thallus absorptance and P-I parameters characterized by higher photosynthetic efficiency at limiting irradiances (alpha) and lower saturating points for photosynthesis (Ek). After 7 d exposure, photoinhibition of Fv/Fm was close to 40-45% in both species. Differences between UV treatments were seen in U. rotundata after 5 d and after 7 d in U. olivascens, in which PAR+UVA impaired strongly photosynthesis (80%). Such patterns were correlated with a progressive decrease in pigment contents, specially chlorophylls. In short-term (6 h) exposures, combinations of UVA+UVB and high PAR level resulted in high rates of photoinhibition of chlorophyll fluorescence (68-92%) in U. rotundata, whereas in U. olivascens photoinhibition ranged between 42% and 53%. Photoinhibition under low PAR combined to UV radiation was lower than observed under high PAR. Net O2-Pmax revealed similar response among the species, with maximal photoinhibition rates close to 60% in algae incubated under high PAR+UVA+UVB. In the case of UV exposure in combination with low PAR, the highest photoinhibition rates were measured in U. rotundata.  相似文献   

8.
Blue diode‐based pulse amplitude modulation (PAM) technology can be used to measure the photosynthetic electron transport rate (ETR) in a purple nonsulfur anoxygenic photobacterium, Afifella (Rhodopseudomonas) marina. Rhodopseudomonads have a reaction center light harvesting antenna complex containing an RC‐2 type bacteriochlorophyll a protein (BChl a RC‐2‐LH1) which has a blue absorption peak and variable fluorescence similar to PSII. Absorptance of cells filtered onto glass fiber disks was measured using a blue–diode‐based absorptance meter (Blue‐RAT) so that absolute ETR could be calculated from PAM experiments. Maximum quantum yield (Y) was ≈0.6, decreasing exponentially as irradiance increased. ETR vs irradiance (P vs E) curves fitted the waiting‐in‐line model (ETR = (ETRmax × E/Eopt) × exp(1 ? E/Eopt)). Maximum ETR (ETRmax) was ≈1000–2000 μmol e? mg?1 BChl a h?1. Fe2+, bisulfite and thiosulfate act as photosynthetic electron donors. Optimum irradiance was ≈100 μmol m?2 s?1 PPFD even in Afifella grown in sunlight. Quantum efficiencies (α) were ≈0.3–0.4 mol e? mol hλ?1; or ≈11.8 ± 2.9 mol e? mol hλ?1 m2 μg?1 BChl a). An underlying layer of Afifella in a constructed algal/photosynthetic bacterial mat has little effect on the measured ETR of the overlying oxyphotoautotroph (Chlorella).  相似文献   

9.
Photosynthetically active radiation (PAR) and Ultraviolet B (UV‐B) radiation are among the main environmental factors acting on herbal yield and biosynthesis of bioactive compounds in medicinal plants. The objective of this study was to evaluate the influence of biologically effective UV‐B light (280–315 nm) and PAR (400–700 nm) on herbal yield, content and composition, as well as antioxidant capacity of essential oils and polyphenols of lemon catmint (Nepeta cataria L. f. citriodora), lemon balm (Melissa officinalis L.) and sage (Salvia officinalis L.) under controlled greenhouse cultivation. Intensive UV‐B radiation (2.5 kJ m?2 d?1) influenced positively the herbal yield. The essential oil content and composition of studied herbs were mainly affected by PAR and UV‐B radiation. In general, additional low‐dose UV‐B radiation (1 kJ m?2d?1) was most effective for biosynthesis of polyphenols in herbs. Analysis of major polyphenolic compounds provided differences in sensitivity of main polyphenols to PAR and UV‐B radiation. Essential oils and polyphenol‐rich extracts of radiated herbs showed essential differences in antioxidant capacity by the ABTS system. Information from this study can be useful for herbal biomass and secondary metabolite production with superior quality under controlled environment conditions.  相似文献   

10.
UVA‐activated psoralens are used to treat hyperproliferative skin conditions due to their ability to form DNA photoadducts, which impair cellular processes and may lead to cell death. Although UVA (320–400 nm) is more commonly used clinically, studies have shown that UVB (280–320 nm) activation of psoralen can also be effective. However, there has been no characterization of UVB‐induced adduct formation in DNA alone. As psoralen derivatives have a greater extinction coefficient in the UVB region (11 800 cm?1 M?1 at 300 nm) compared with the UVA region (2016 cm?1 M?1 at 365 nm), a greater extent of adduct formation is expected. SELDI‐TOF, a proteomic technique that combines chromatography with mass spectrometry, was used to detect photoadduct formation in an alternating A–T oligonucleotide. 8‐Methoxypsoralen (8‐MOP) and DNA solutions were irradiated with either UVA or UVB. An adduct peak was obtained with SELDI‐TOF. For UVB‐activated 8‐MOP, the extent of adducts was three times greater than for UVA. HPLC ESI‐MS analysis showed that UVB irradiation yielded high levels of 3,4‐monoadducts (78% of total adducts). UVA was more effective than UVB at conversion of 4′,5′‐monoadducts to crosslinks (17% vs 4%, respectively). This report presents a method for comparing DNA binding efficiencies of interstrand crosslink inducing agents.  相似文献   

11.
Macroalgae play a crucial role in coastal marine ecosystems, but they are also subject to multiple challenges due to tidal and seasonal alterations. In this work, we investigated the photosynthetic response of Pyropia yezoensis to ultraviolet radiation (PAR: 400–700 nm; PAB: 280–700 nm) under changing temperatures (5, 10 and 15°C) and light intensities (200, 500 and 800 μmol photons m?2 s?1). Under low light intensity (200 μmol photons m?2 s?1), P. yezoensis showed the lowest sensitivity to ultraviolet radiation, regardless of temperature. However, higher temperatures inhibited the repair rates (r) and damage rates (k) of photosystem II (PSII) in P. yezoensis. However, under higher light intensities (500 and 800 μmol photons m?2 s?1), P. yezoensis showed higher sensitivity to UV radiation. Both r and the ratio of repair rate to damage rate (r:k) were significantly inhibited in P. yezoensis by PAB, regardless of temperature. In addition, higher temperatures significantly decreased the relative UV‐inhibition rates, while an increased carbon fixation rate was found. Our study suggested that higher light intensities enhanced the sensitivity to UV radiation, while higher temperatures could relieve the stress caused by high light intensity and UV radiation.  相似文献   

12.
Photosynthetic bacteria are attractive for biotechnology because they produce no oxygen and so H2‐production is not inhibited by oxygen as occurs in oxygenic photoorganisms. Rhodopseudomonas palustris and Afifella marina containing BChl a can use irradiances from violet near‐UV (VNUV) to orange (350–650 nm) light and near‐infrared (NIR) light (762–870 nm). Blue diode‐based pulse amplitude modulation technology was used to measure their photosynthetic electron transport rate (ETR). ETR vs Irradiance curves fitted the waiting‐in‐line model—ETR = (ETRmax × E/Eopt) × exp (1 ? E/Eopt). The equation was integrated over pond depth to calculate ETR of Afifella and Rhodopseudomonas in a pond up to 30 cm deep (A376, 1 cm = 0.1). Afifella saturates at low irradiances and so photoinhibition results in very low photosynthesis in a pond. Rhodopseudomonas saturates at ≈15% sunlight and shows photoinhibition in the surface layers of the pond. Total ETR is ≈335 μmol (e?) m?2 s?1 in NUV + photosynthetically active radiation light (350–700 nm). Daily ETR curves saturate at low irradiances and have a square‐wave shape: ≈11–13 mol (e?) m?2 day?1 (350–700 nm). Up to 20–24% of daily 350–700 nm irradiance can be converted into ETR. NIR is absorbed by water and so competes with the bacterial RC‐2 photosystem for photons.  相似文献   

13.
Both ocean acidification (OA) and solar ultraviolet (UV) radiation can bring about changes in macroalgal physiological performance. However, macroalgal responses to UV radiation when acclimatized to OA under different time scales are rare. Here, we investigate the response of Ulva linza, a green tide alga, to UV radiation in the form of photosynthetically active radiation (PAR) or PAB (PAR+UVA+UVB) radiation. Radiation exposures were assessed following long‐term (from spore to adult stage, 1 month) and short‐term (adult stage, 1 week) OA treatments. Results showed that increased CO2 decreased the damage rate (k) and repair rate (r) of thalli grown under short‐term OA conditions with PAB treatment, the ratio of r:k was not altered. Following long‐term OA conditions, r was not affected, although k was increased in thalli following PAB treatment, resulting in a reduced ratio of r:k. The relative level of UV inhibition increased and UV‐absorbing compounds decreased when algae were cultured under long‐term OA conditions. The recovery rate of thalli was enhanced when grown under long‐term OA after UV radiation treatment. These results show that blooming algae may be more sensitive to UV radiation in marine environments, but it can develop effective mechanisms to offset the negative effects, reflecting acclimation to long‐term OA conditions.  相似文献   

14.
UV effects on invertebrate and diatom assemblages of Greece   总被引:2,自引:0,他引:2  
The effects of solar radiation (PAR, UVA, UVB) on the productivity and structure of diatom and invertebrate assemblages were assessed during primary succession on artificial substrate near a rocky shore of the Saronikos Gulf, Greece. Three light treatments were performed (PAR, PAR+UVA, and PAR+UVA+UVB) at 0.5, 1.0 and 1.5 m of depth. Pennate diatoms were the major component of the developing periphytic communities during the study period. Exposure to solar UVB initially reduced the biomass and altered the structure of the diatom assemblages. The highest biomass of diatom assemblages was observed under PAR (49.2 g/m2). This value was significantly higher than the biomass of assemblages growing under PAR+UVA+UVB, but not significantly different compared to the biomass of assemblages exposed to PAR+UVA. These differences, however, did not persist at later stages. The most abundant invertebrate groups present were Polychaetes and Crustaceans. Solar UVB did not have significant effects on invertebrate biomass. Analysis of the invertebrate assemblage structure revealed time-course differences but no clear trends among the different treatments.  相似文献   

15.
Effects of Solar UV Radiation on Diatom Assemblages of the Mediterranean   总被引:1,自引:0,他引:1  
Abstract— Three UV treatments (PAR; PAR + UVA; PAR + UVA + UVB) were performed by placing different UV-ab-sorbing Alters over communities developing on ceramic tiles in a natural marine habitat near Korinthos, Greece. The experiment was repeated at three depths (0.5 m, 1 m, 1.5 m) below the surface of the sea. Differences in community structure due to UV radiation exposure were more pronounced during the early stages of community development. After the first 3 weeks of growth, the productivity of the PAR + UVA + UVB treatment was significantly lower than the PAR + UVA but not than the PAR treatment. This difference did not persist thereafter. At 5 weeks of growth, the productivity at 0.5 m was significantly lower that at 1.0 m. No other significant differences were observed. The findings of the present study suggest that periphytic communities occurring at the upper layers of the euphotic zone may be capable of adjusting to changes in environmental stresses such as by increased solar UVB irradiance.  相似文献   

16.
Abstract— The risks incurred from increased exposure to UVA II (320-340 nm) (i.e. during sunscreen use and extended outdoor exposure, tanning parlors) are not well understood. Therefore, we explored the effects of UVA II on skin immune responses in humans. After a single local exposure (4 minimum erythemal dose [MED]) using a xenon arc lamp filtered with a narrow bandpass filter (335 ± 5 nm full width at half maximum), individuals were contact-sensitized with dinitrochlorobenzene (DNCB) through a UVA II exposure site or through normal skin. UVA II induced a marked decrease in the magnitude of skin immune responses (P < 0.0001). The UVA II group had only 29% successful sensitizations, as compared to 83% in the control group. The percentage of individuals who remained tolerant to DNCB after two sensitizations was 23.6% for the UVA II-exposed group, as compared to 3.8% in the controls (P= 0.006). UVA II also uniquely altered the type of antigen-presenting cells present in the epidermis. Human leukocyte antigen (HLA)-DR+ cells in control epidermal cell suspensions (C-EC) comprised a single, homogeneous population of Langerhans cells (LC) with the phenotype: CD1ahi DRmid CD11b? CD36? (1.5 ± 0.3% of EC). UVA II irradiation reduced the number of such LC to 0.6 ± 0.2% of EC. Although cells expressing the macrophage phenotype: CD1a DRhi CD11b+ CD36+ were increased in UVA II skin, relative to C-EC, these comprised only 10.1 ± 6.1% of the DR+ cells, which is less than that after UVB exposure. Also distinct from UVB, a third population was found in UVA II-EC, which exhibited a novel phenotype: CD1a+ DR+ CD36+ CDllb+; these comprised 11.1 ± 6.9% of the DR+ UVA II-EC. In conclusion, despite the above differences in infiltrating DR cells, both UVB and UVA II reduce the skin's ability to support contact sensitization, induce active suppression (tolerance) and induce a reduction in LC.  相似文献   

17.
Abstract— Cutaneous erythema resulting from UVB radiation has been extensively studied in both humans and experimental animals; however, although there have been several investigations defining UVA erythema in humans, there have been no comprehensive reports using an animal model. Accordingly, studies were designed to assess UVA erythema in terms of time of onset; time of maximum reaction; and fluence-response relationships in albino guinea pigs and to compare these with similar studies in humans. Two high intensity Hg vapor lamps containing iron and gallium halides were used as UVA light sources. Both have sufficient fiuence rates (190 to 260 W m?2) so as to allow convenient exposure times for delivery of UVA erythemogenic fluences. UVA fluences of 20 times 104, 40 times 104 and 60 times 104 J m?2 were administered to 58 humans and 51 Hartley-strain albino guinea pigs. Data obtained in humans indicate that UVA erythema develops immediately after irradiance with a maximum erythema peak occurring in 6 to 12 h and markedly diminishing by 24 h. The minimal fiuence required to elicit erythema responses in Type I and Type II individuals was found to be approximately 40 times 104 J m?2 of UVA when observed at 6 h, a fiuence about 1000 times greater than that used to elicit UVB erythema. Studies in 51 guinea pigs demonstrated erythema immediately after irradiance, with a peak between 8 to 12 h, and a marked decrease in 48 h. The fiuence of UVA required to elicit erythema was similar to that required in humans. The two different light sources provided comparable data per unit exposure and were essentially similar to a Xe lamp. These data from both humans and guinea pigs strongly support the concept that UVA erythema can be assayed in guinea pigs and correlated with humans.  相似文献   

18.
Abstract— The effect of UVB (280–320 nm radiation) and ozone (O3) on growth, photosynthetic pigments, ribulose bisphosphate carboxylase/oxygenase (rubisco) activity and rubisco protein were investigated in Arabidopsis thaliana genotypes wild type Landsberg erecta (LER) and tt5, a flavonoid-deficient mutant. The UVB exposure for 5 days decreased whole plant dry weight of only tt5 plants, while O3 exposure decreased the whole plant dry weight of both genotypes. The UVB exposure enhanced chlorophylls and carotenoids in both genotypes while O3 exposure decreased photosynthetic pigments in both genotypes. Both UVB and 03 exposure enhanced UV-absorbing compounds in LER but not in tt5. Ultraviolet-B exposure decreased initial and total rubisco activities only in tt5 plants, which contained smaller amounts of UV-absorbing pigments. The effect of UVB was greater on initial rubisco activity resulting in decreased percent activatible rubisco. Ozone exposure decreased initial and total rubisco activities in both genotypes, and the magnitudes of decrease were greater on total rubisco activity, resulting in enhanced levels of percent activatible rubisco. Immunoblot analysis performed with antibodies raised against rubisco large subunit (LSU) and rubisco small subunit (SSU) showed no major changes in the levels of rubisco protein of either genotype irradiated with UVB. However, both rubisco LSU and SSU decreased in tt5 plants exposed to UVB for 7 days (70% of total leaf area necrotic). In contrast, O3 exposure of both the genotypes decreased the levels of rubisco LSU and SSU before the appearance of visible symptoms of injury. These results suggested that UVB-induced limitations of growth are independent of changes in rubisco protein while O3-induced growth limitations appeared to be due to a significant reduction in rubisco protein.  相似文献   

19.
The purpose of this study was to verify the occurrence of pigment dispersion in retinal pigment cells exposed to UVA and UVB radiation, and to investigate the possible participation of a nitric oxide (NO) pathway. Retinal pigment cells from Neohelice granulata were obtained by cellular dissociation. Cells were analyzed for 30 min in the dark (control) and then exposed to 1.1 and 3.3 J cm−2 UVA, 0.07 and 0.9 J cm−2 UVB, 20 n m β-PDH (pigment dispersing hormone) or 10 μ m SIN-1 (NO donor). Histological analyses were performed to verify the UV effect in vivo . Cultured cells were exposed to 250 μ m L-NAME (NO synthase blocker) and afterwards were treated with UVA, UVB or β-PDH. The retinal cells in culture displayed significant pigment dispersion in response to UVA, UVB and β-PDH. The same responses to UVA and UVB were observed in vivo . SIN-1 did not induce pigment dispersion in the cell cultures. l-NAME significantly decreased the pigment dispersion induced by UVA and UVB but not by β-PDH. All retinal cells showed an immunopositive reaction against neuronal nitric oxide synthases. Therefore, UVA and UVB radiation are capable of inducing pigment dispersion in retinal pigment cells of Neohelice granulata and this dispersion may be nitric oxide synthase dependent.  相似文献   

20.
Ultraviolet (UV) radiation from the solar spectrum is a major etiological factor for many cutaneous pathologies including cancer. By understanding changes in cell signaling pathways induced by UVA and UVB, novel strategies for prevention and treatment of UV‐related pathologies could be developed. However, much of the information in the literature from various laboratories cannot cross talk because of difficulties associated with the use of ill‐defined light sources and physiologically irrelevant light dosimetry. Herein, we have assessed the effect of exposure of normal human epidermal keratinocytes (NHEK) to UVA (2 and 4 J cm?2) or UVB (20 and 40 mJ cm?2) radiation. Employing western blot analysis, we found that exposure of NHEK to UVB, but not UVA, phosphorylates JNK1/2 at Th183/Tyr185, STAT3 at Ser727, AKT at Ser473 and increases c‐Fos expression, whereas exposure to UVA, but not UVB, phosphorylates AKT at Thr308. UVB as well as UVA exposure leads to increased phosphorylation of (1) ERK1/2 at Th202/Tyr204; (2) p38 at Th180/Tyr204; (3) STAT3 at Tyr705; (4) mTOR at Thr2448; and (v) p70S6k at Thr421/Ser424; enhanced expression of PI3K (p85) and c‐jun; and nuclear translocation of NFκB proteins. These findings could be considered as a beginning for understanding the differential effects of UVA and UVB in the human skin and may have implications both with respect to risk assessment from exposure to solar UV radiation, and to target interventions against signaling events mediated by UVA and UVB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号