首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Continuous variation method in UV revealed that methyl N-acetylaminoacrylate (MNA) and SnCl4 formed the 1:1 complex. The copolymerization of MNA with styrene in tetrahydrofuran was carried out at 50 °C in the presence of SnCl4. The resulting monomer reactivity ratios decreased with an increasing concentration of SnCl4 added. This finding suggests that SnCl4 participates in the propagation step of the copolymerization. Therefore, the copolymerization was analyzed by assuming terpolymerization of free MNA (M1), complexed MNA (M2), and styrene (M3). The absolute copolymerization parameters were obtained as follows: k11/k12=0.165, k11/k13=3.04, k22/k21=0.32, k22/k23=0.103, k33/k31=0.058, k33/k32=0.001, Q1=6.03, e1=0.52, Q2=88.57, and e2=2.23. The complexed MNA is more reactive to polymer radicals with free MNA and styrene as the terminal unit than the free MNA. Very small values of k22/k23 and k33/k32 suggests that the copolymerization of the complexed MNA and styrene proceeds alternatingly.  相似文献   

2.
The structure and magnetic properties of the RCo5Ga7 (R=Y, Tb, Dy, Ho and Er) compounds with the ScFe6Ga6-type structure have been studied. The stability of RCo5Ga7 is closely related with the ratio of the metal radii RRE/R(Co,Ga). With RRE/R(Co,Ga)?1.36, the compounds can be stabilized in the ScFe6Ga6-type structure. The lattice of RCo5Ga7 shrinks as the atomic order of R increases, and it is consistent with the lanthanide contraction. The structure analysis based on X-ray diffraction patterns reveals that in the orthorhombic RCo5Ga7 (Immm), R occupies the 2a site, and Co enters into the 8k and the 4h sites, and Ga is at the 4e, 4f, 4g, 4h and 8k sites. The interatomic distances and the coordination numbers of RCo5Ga7 are provided from the refinement results. The short interatomic distance (less than 2.480 Å) between the Co ions results in the negative magnetic interaction, which does not favor ferromagnetic ordering. The magnetic moment of YCo5Ga7 is absent, and RCo5Ga7 (R=Tb, Dy, Ho and Er) may have long-range magnetic ordering with the paramagnetic Curie temperature lower than 5 K.  相似文献   

3.
The La2W2−xMoxO9 series has been synthesized by the ceramic method. An alternative synthesis using microwave radiation is also reported. La2W2O9 has two polymorphs and the low-temperature phase (α) transforms to the high-temperature form (β) at 1077°C. The influence of the W/Mo substitution in this phase transition has been investigated by DTA. The β structure for x≥0.7 compositions can be prepared as single phase at any cooling rate. The β phase for 0.3≤x≤0.7 compounds can be prepared as single phase by quenching, whereas a mixture of α and β phases is obtained by slow cooling. The W/Mo ratio in both coexisting phases is different with the β-phase having a higher Mo content. The x=0.1 and 0.2 compounds have been prepared as mixtures of phases. The room temperature structure of β-La2W1.7Mo0.3O9 has been analyzed by the Rietveld method in P213 space group. The final R-factors were RWP=9.0% and RF=5.6% with a structure similar to that of β-La2Mo2O9. Finally, the thermal expansion of both types of structures has been determined from a thermodiffractometric study. The thermal expansion coefficients were 2.9×10−6 and 9.7×10−6°C−1 for α-La2W2O9 and β-La2W1.2Mo0.8O9, respectively.  相似文献   

4.
The subsolidus phase relations of R2O3-CaO-CuO ternary systems (R=Nd, Sm, Gd, Tm) have been investigated by X-ray powder diffraction. All samples were synthesized at about 950° in air. There exists a ternary compound Ca14−xRxCu24O41 (x = 4 for R=Nd, Gd and x = 5 for R = Sm) and a ternary solid solution Ca2+xR2−xCu5O10 (R=Nd, Sm, Gd, Tm) with a wide composition range Δx of about 0.6. The compound Ca14−xRxCu24O41 possesses a layered orthorhombic structure and is isostructural to Sr14−xCaxCu24O41. The lattice parameters a and c of the compound are basically independent of the ionic radius of R, while the lattice parameter b and unit-cell volume V decrease substantially with the decrease of the ionic radii of R. The Ca2+xR2−xCu5O10 solid solution is isostructural to Ca2+xY2−xCu5O10, the structure of which is based on an orthorhombic “NaCuO2-type” subcell containing infinite one-dimensional chains of edge-shared square planar cuprate groups crosslinked by the layered cations Ca and R that locate in the inter-chain tunnels.  相似文献   

5.
The chemical stability of perovskite-type La1−xCaxCrO3−δ (x=0.1, 0.2, 0.3) in high oxygen partial pressure, PO2, was investigated with three methods: thermogravimetry, XRD analysis, and thermodynamic calculation. The second phase, CaCrO4 was observed by XRD analysis on the powder equilibrated in high PO2. Thermogravimetry under fixed temperatures sensitively detected the segregation of the second phase in the form of oxygen incorporation, because oxidation of chromium ion accompanies the segregation. The second phase tended to appear in high PO2 and at low temperature. The single-phase regions of La1−xCaxCrO3−δ obtained from the two experimental methods well agreed with each other. The results of thermodynamic calculation on the assumption of ideality of the solid solution also agreed with the experimental results. These results suggested the sufficient chemical stability of La1−xCaxCrO3−δ in high PO2 concerning the application to an interconnector of high-temperature solid oxide fuel cells; for example, La0.7Ca0.3CrO3−δ is stable at 1273 K in air.  相似文献   

6.
The reaction of HgI2 with 1-CnH2n+1-2-(arylazo)imidazole (Raai-CnH2n+1 where n = 4, 6, 8) has isolated iodide bridging dimeric complexes, [Hg(RaaiCnH2n+1)(μ-I)(I)]2. The structures of the ligand and the complexes have been established by spectral (UV-Vis, IR, 1H NMR) data. One of these complexes [Hg(1-hexyl-2-(p-tolylazo)imidazole)(μ-I)(I)]2 has been structurally confirmed by single crystal X-ray diffraction study. The ligand, Raai-CnH2n+1 exists at ambient condition in trans geometry about azo (-NN-) group; the UV light irradiation in MeOH solution shows E-to-Z isomerisation. The reverse transformation, Z-to-E, is very slow with visible light irradiation while isomerises rapidly on heating. The coordinated ligand, Raai-CnH2n+1 in the complexes exhibit similar behaviour in DMF solution. Quantum yields (?EZ) of E-to-Z isomerisation are higher for free ligands than that of their metal complexes. The Z-to-E isomerisation is a thermally induced process. The activation energy (Ea) is calculated by controlled temperature experiment.  相似文献   

7.
The solid solutions of ScBRh3-ScRh3 and CeBRh3-CeRh3 are synthesized by the arc melting method, where RBRh3 and RRh3 (R=rare earth element) have perovskite and AuCu3 type structures, respectively. The binding energy of Sc 2p3/2 for ScBxRh3 increases with the boron concentration. The Knight shift of 45Sc observed by nuclear magnetic resonance spectroscopy decreases with increase of boron concentration. The decrement of the Knight shift corresponds the Sc 4s electron density at the Fermi level. The intensity ratio of f2f1f0 of Ce 3d XPS spectrum changes with boron concentration of CeBxRh3. It is concluded that in both cases of ScBxRh3 and CeBxRh3 the charge on the atoms on A-site changes with the concentration of the atoms on B-site, where the atoms are not directly bound.  相似文献   

8.
The rare earth-rich intermetallic phases RE9TMg4 (RE = Y, Dy-Tm, Lu; T = Ru, Rh, Os, Ir) were synthesized by induction melting of the elements using sealed niobium ampoules as crucible material. The melted samples were additionally annealed in muffle furnaces and subsequently characterized by X-ray powder diffraction. The RE9TMg4 compounds adopt an ordered Co2Al5 type structure, space group P63/mmc. Four structures were refined from single-crystal X-ray diffractometer data: a = 953.71(5), c = 968.41(5) pm, wR2 = 0.00273, 603 F2 values, 21 parameters for Tm8.76RuMg4.24; a = 958.37(5), c = 975.66(5), wR2 = 0.00384, 661 F2 values, 20 parameters for Dy9OsMg4; a = 943.70(5), c = 967.91(5) pm, wR2 = 0.00430, 592 F2 values, 21 parameters for Tm8.74OsMg4.26; a = 968.09(5), c = 978.25(5) pm, wR2 = 0.0439, 623 F2 values, 21 parameters for Y9.18IrMg3.82. The compounds are prone to small homogeneity ranges (RE/Mg mixing). The transition metal atoms have tricapped trigonal prismatic rare earth coordination. These T@RE9 units (TP) are condensed with empty RE6 octahedra (O) via common triangular faces forming infinite strands with a sequence –TP–O–O–. These strands show the motif of hexagonal rod packing and they are separated by chains of edge- and corner-sharing tetrahedra. The magnesium substructures in the hexagonal Laves phase YMg2 and the prototype Y9CoMg4 are structurally closely related. Charge transfer trends, electronic band structures and bonding properties were studied within DFT. The resulting picture is that cobalt brings covalent character by reducing the overall charge transfer and modifies the Laves phase YMg2 by providing larger localization in the density of states. The Y–Co bonding in Y9CoMg4 prevails while weakening the Y–Mg bonds. The investigations of the magnetic properties of selected RE9TMg4 compounds revealed Pauli paramagnetic behavior for Y9CoMg4, Y9OsMg4 and Y9IrMg4. A ferromagnetic ground state with Curie temperatures of 46.0 and 47.6 K was observed for Dy9RuMg4 and Dy9OsMg4, respectively. Ho9RuMg4, Ho9OsMg4 and Tm9OsMg4 reveal antiferromagnetic ordering with Neél temperatures below 20 K.  相似文献   

9.
《Comptes Rendus Chimie》2016,19(10):1226-1236
The molecular structure and catalytic performance of (MoOx)n/TiO2, (WOx)n/TiO2 and (VOx)n/TiO2 catalysts (synthesized by the equilibrium–deposition–filtration/EDF method) for oxidative dehydrogenation (ODH) of ethane were studied by in situ Raman spectroscopy at 430 °C and catalytic measurements in the temperature range of 420–480 °C. The extent of association within the deposited oxometallic phase followed the sequence (VOx)n/TiO2 >> (MoOx)n/TiO2 > (WOx)n/TiO2; a concurrent trend in reduction susceptibility was evidenced by exploiting the relative normalized Raman band intensities while monitoring the response of the vibrational properties of the catalytic samples under reactive (C2H6/O2/He) and reducing (C2H6/He) conditions by in situ Raman spectroscopy. The catalyst reactivity tracks the corresponding trend in reduction susceptibility as evidenced by the in situ Raman spectra. Selective reaction pathways are favored at high coverage whilst combustion routes are activated at low coverages due to the involvement of carrier lattice oxygen sites. The observed apparent reaction rates and activation energies are discussed in relation to various structural and reactivity aspects.  相似文献   

10.
The incorporation possibilities of different alkali elements into crystalline phosphates A1−xAxHf2(PO4)3 (A=Li, Na, K, Rb, Cs) were studied, the formation regions of kosnarite solid solutions were determined. Na0.5K0.5Hf2(PO4)3 crystal structure was studied by powder X-ray diffraction, and the distribution of alkali metals in kosnarite structure was found out. The phosphate crystallizes in the space group R3?c, with a=8.7295(1) Å, c=23.2023(4) Å, V=1531.24(4) Å3, Z=6; Rwp=6.15, Rp=4.43. The concentration region knowledge of the kosnarite phase existence and peculiarities of their phase formation in the A1−xAxM2(PO4)3 (M=Ti, Zr, Hf) systems allow us to choose phosphate matrice compositions suitable for solidification of reprocessing wastes of spent U-Pu nuclear fuels.  相似文献   

11.
The influence of Zn-doping on the crystal structure and magnetic properties of the spin ladder compounds La2Cu2O5 (4-leg) and La8Cu7O19 (5-leg) have been investigated. The La2(Cu1−xZnx)2O5 and La8(Cu1−xZnx)7O19 solid solutions were obtained as single phases with x=0-0.1 via the solid-state reaction method in the temperature range between 1005-1010 °C and 1015-1030 °C in oxygen and air atmospheres, respectively. The lattice parameters a and c of the monoclinic crystal structures as well as the unit cell volume V increase with increasing x, while b and β decrease for both series. The magnetic susceptibilities χ of both series show a very similar behavior on temperature as well as on Zn-doping, which is supposed to be due to the similar Cu-O coordination in both La2Cu2O5 and La8Cu7O19. For low Zn-doping (x?0.04), a spin-chain like behavior is found. This quasi-one-dimensional behavior is strongly suppressed in both series for x?0.04. Here, the maximum (characteristic for spin chains) in χ(T) disappears and χ(T) decreases monotonically with increasing temperature.  相似文献   

12.
The crystal structures of ternary compounds RPt3−xSi1−y(R=Y, Tb, Dy, Ho, Er, Tm, Yb) have been elucidated from X-ray single crystal CCD data. All compounds are isotypic and crystallize in the tetragonal space group P4/mbm. The general formula RPt3−xSi1−y arises from defects: x≈0.20, y≈0.14. The crystal structure of RPt3−xSi1−y can be considered as a packing of four types of building blocks which derive from the CePt3B-type unit cell by various degrees of distortion and Pt, Si-defects.  相似文献   

13.
The ternary aluminides R2Rh3Al9 (R=Y, La-Nd, Sm, Gd-Tm, Lu), R2Ir3Al9 (R=Y, La-Nd, Sm, Gd-Lu), and R2Pd3Al9 (R=Y, Gd-Tm) have been prepared by arc melting of the elemental components with an excess of aluminum and dissolving the aluminum-rich matrix in hydrochloric acid. They crystallize with Y2Co3Ga9-type structure: Cmcm, Z=4. The crystal structures of Ho2Rh3Al9 and Er2Ir3Al9 have been refined from single-crystal X-ray data; Ho2Rh3Al9: a=1316.8(3) pm, b=760.2(2) pm, c=933.7(2) pm, R=0.044 for 255 structure factors and 27 variables; Er2Ir3Al9: a=1313.8(2) pm, b=758.5(1) pm, c=933.8(2) pm, R=0.057 (392 F values, 27 variables). The structure may be viewed as consisting of atomic layers of the compositions A=R2Al3 and B=T3Al6 which alternate in the sequence ABAB along the z direction. Approximately 33% and 27% of the A layers were found to be misplaced in the crystals investigated for Ho2Rh3Al9 and Er2Ir3Al9, respectively. The magnetic properties of most iridium-containing compounds have been determined with a superconducting quantum interference device magnetometer. The yttrium and the lanthanum compounds show Pauli paramagnetism, others reflect the magnetic behavior of the rare-earth components. The magnetic ordering temperatures are all lower than 20 K.  相似文献   

14.
The electronic structures of FeO 4 2? , RuO4, RuO 4 ? , RuO 4 2? and OsO4 have been investigated using the Hartree-Fock-Slater Discrete Variational Method. The calculated ordering of the valence orbitals is 2t 2, 1e, 2a 1, 3t 2 andt 1 with thet 1 orbital as the highest occupied. The first five charge transfer bands are assigned as:t 1→2e(v 1), 3t 2→2e(v 2),t 1→4t 2(v 3), 3t 2→4t 2(v 4) and 2a 1→4t 2(v 5). It is suggested that ad-d transition should be observed at 1.5 eV in RuO 4 ? and RuO 4 2? .  相似文献   

15.
The structural parameters of the effective r g configuration of the LaI3 molecule were calculated using the DFT/B3LYP method. The difference between the calculated values of r e (La-I) and r g (La-I) is mostly due to the anharmonicity of the ν1 and ν2 vibrations and does not exceed the error in determining the distance r g (La-I) in the electron diffraction experiment. Inclusion of the anharmonicity of the ν2 and ν4 deformation vibrations in calculations leads to decreased amplitudes l(I…I) and shrinking effect δ(I…I) compared to the respective values obtained in the harmonic approximation. The LaI3 molecule proved to be more rigid than predicted by B3LYP calculations.  相似文献   

16.
The non-isothermal crystallization and melting of ultra high molecular weight polyethylene (UHMWPE) were observed by means of differential scanning calorimetry and compared with those of ordinary high-density polyethylene (HDPE). The crystallization temperature (T c ) and melting point (T m ) of UHMWPE were found to be higher thanT c andT m of HDPE, and the latent heat of crystallization (δH c ) and fusion (δH m ) of UHMWPE are smaller thanδH c andδH m of HDPE. The results were explained in terms of the theory of polymer crystallization and the structure characteristics of UHMWPE. The relationships between the parameters (T c ,T T ,δH c andδH m ) and the molecular weight (M) of UHMWPE are discussed. Processing of the experimental data led to the establishment of four expressions describing the above relationships.  相似文献   

17.
The intensity ratios, ILk/I (k=l,β1,4,β3,6,β2,7,9,10,15,γ1,5,γ2,3,γ4,β,γ), have been measured for some compounds of 66Dy, namely, Dy2O3, Dy2(CO3)3, Dy2(SO4)3, DyI2 and Dy metal by creating the Li(i=1–3) sub-shell vacancies in widely different proportions at two incident photon energies of 22.6 keV and 59.54 keV, in order to check the predicted dependence of these ratios on the incident photon energy and also investigate the influence of chemical effects on these ratios for an f-block element. The measurements were performed using the EDXRF spectrometer involving disk type radioactive sources of Cd109 and Am241 and a Peltier cooled Si PIN x-ray detector arranged in the 90° reflection geometry. The measured intensity ratios have been compared with the theoretical ILk/I values and those calculated using the two sets of fluorescence and Coster–Kronig yields available in literature in order to check the reliability of the theoretical/calculated values. Further, the measured ratio, I4/I, was found to depend on the oxidation state of 66Dy as well as nature of ligand attached to it in a given compound.  相似文献   

18.
Vibrational frequencies vOH and vOD have been measured for isotopically-dilute HDO molecules in eleven solid hydrates at 90 K. The results have been used to prepare a plot of the ratio vOH/vOD versus vOH. The ratios fall on a smooth curve and decrease with decreasing frequencies vOH. The anharmonicity constants ωexe have been estimated. They were found to increase with decreasing vOH.  相似文献   

19.
Oxides in the system PrCo1−xMgxO3 (x=0.0, 0.05, 0.10, 0.15, 0.20, 0.25) were synthesized by citrate technique and characterized by powder X-ray diffraction and scanning electron microscope. All compounds have a cubic perovskite structure (space group ). The maximum ratio of doped Mg in the system PrCo1−xMgxO3 is x=0.2. Further doping leads to the segregation of Pr6O11 in PrCo1−xMgxO3. The substitution of Mg for Co improves the performance of PrCoO3 as compared to the electrical conductivity measured by a four-probe electrical conductivity analyzer in the temperature range from 298 to 1073 K. The substitution of Mg for Co on the B site may be compensated by the formations of Co4+ and oxygen vacancies. The electrical conductivity of PrCo1−xMgxO3 oxides increases with increasing x in the range of 0.0-0.2. The increase in conductivity becomes considerable at the temperatures ?673 K especially for x?0.1; it reaches a maximum at x=0.2 and 1073 K. From x>0.2 the conductivity of PrCo1−xMgxO3 starts getting lower. This is probably a result of the segregation of Pr6O11 in PrCo1−xMgxO3 , which blocks oxygen transport, and association of oxygen vacancies. A change in activation energy for all PrCo1−xMgxO3 compounds (x=0-0.25) was observed, with a higher activation energy above 573 K and a lower activation energy below 573 K. The reasons for such a change are probably due to the change of dominant charge carriers from Co4+ to Vö in PrCo1−xMgxO3 oxides and a phase transition mainly starting at 573 K.  相似文献   

20.
The ionization of six compounds of bis-phenolic amides was studied spectrophotochemically in DMF-water mixture. The compounds showed two pKa values in the range of 5.97-7.32 for pKa1 and 7.61-8.44 for pKa2. The obtained values of Ka were normalized using the distribution diagrams of the different species and found to be in the range of 5.81-7.42 for pKa1 and 7.48-8.27 for pKa2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号