首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, we construct a weakly‐nonlinear d'Alembert‐type solution of the Cauchy problem for the Boussinesq‐Klein‐Gordon (BKG) equation. Similarly to our earlier work based on the use of spatial Fourier series, we consider the problem in the class of periodic functions on an interval of finite length (including the case of localized solutions on a large interval), and work with the nonlinear partial differential equation with variable coefficients describing the deviation from the oscillating mean value. Unlike our earlier paper, here we develop a novel multiple‐scales procedure involving fast characteristic variables and two slow time scales and averaging with respect to the spatial variable at a constant value of one or another characteristic variable, which allows us to construct an explicit and compact d'Alembert‐type solution of the nonlinear problem in terms of solutions of two Ostrovsky equations emerging at the leading order and describing the right‐ and left‐propagating waves. Validity of the constructed solution in the case when only the first initial condition for the BKG equation may have nonzero mean value follows from our earlier results, and is illustrated numerically for a number of instructive examples, both for periodic solutions on a finite interval, and localized solutions on a large interval. We also outline an extension of the procedure to the general case, when both initial conditions may have nonzero mean values. Importantly, in all cases, the initial conditions for the leading‐order Ostrovsky equations by construction have zero mean, while initial conditions for the BKG equation may have nonzero mean values.  相似文献   

2.
We apply the classical Lie method and the nonclassical method to a generalized Ostrovsky equation (GOE) and to the integrable Vakhnenko equation (VE), which Vakhnenko and Parkes proved to be equivalent to the reduced Ostrovsky equation. Using a simple nonlinear ordinary differential equation, we find that for some polynomials of velocity, the GOE has abundant exact solutions expressible in terms of Jacobi elliptic functions and consequently has many solutions in the form of periodic waves, solitary waves, compactons, etc. The nonclassical method applied to the associated potential system for the VE yields solutions that arise from neither nonclassical symmetries of the VE nor potential symmetries. Some of these equations have interesting behavior such as “nonlinear superposition.”  相似文献   

3.
The Ostrovsky equation governs the propagation of long nonlinear surface waves in the presence of rotation. It is related to the Korteweg-de Vries (KdV) and the Kadomtsev-Petviashvili models. KdV can be obtained from the equation in question when the rotation parameter γ equals zero. A fundamental solution of the Cauchy problem for the linear Ostrovsky equation is presented in the form of an oscillatory Fourier integral. Another integral representation involving Airy and Bessel functions is derived for it. It is shown that its asymptotic expansion as γ → 0 contains the KdV fundamental solution as the zero term. The Airy transform is used to establish some of its properties. Higher-order asymptotics for γ → 0 on a bounded time interval are obtained for both the fundamental solution and the solution of the linear Cauchy problem for the Ostrovsky equation.  相似文献   

4.
The Ostrovsky equation governs the propagation of long nonlinear surface waves in the presence of rotation. It is related to the Korteweg-de Vries (KdV) and the Kadomtsev-Petviashvili models. KdV can be obtained from the equation in question when the rotation parameter γ equals zero. A fundamental solution of the Cauchy problem for the linear Ostrovsky equation is presented in the form of an oscillatory Fourier integral. Another integral representation involving Airy and Bessel functions is derived for it. It is shown that its asymptotic expansion as γ → 0 contains the KdV fundamental solution as the zero term. The Airy transform is used to establish some of its properties. Higher-order asymptotics for γ → 0 on a bounded time interval are obtained for both the fundamental solution and the solution of the linear Cauchy problem for the Ostrovsky equation. Received: November 23, 2004; revised: March 13, 2005 Research is supported by US Department of Defense, under grant No. DAAD19-03-1-0204  相似文献   

5.
The large‐amplitude internal waves commonly observed in the coastal ocean often take the form of unsteady undular bores. Hence, here, we examine the long‐time combined effect of variable topography and background rotation on the propagation of internal undular bores, using the framework of a variable‐coefficient Ostrovsky equation. Because the leading waves in an internal undular bore are close to solitary waves, we first examine the evolution of a single solitary wave. Then, we consider an internal undular bore, for which two methods of generation are used. One method is the matured undular bore developed from an initial shock box in the Korteweg–de Vries equation, that is the Ostrovsky equation with the rotational term omitted, and the other method is a modulated cnoidal wave solution of the same Korteweg–de Vries equation. It transpires that in the long‐time model simulations, the rotational effect disintegrates the nonlinear waves into inertia‐gravity waves, and then there emerge complicated interactions between these inertia‐gravity waves and the modulated periodic waves of the undular bore, especially at the rear part of the undular bore. However, near the front of the undular bore, nonlinear effects further modulate these waves, with the eventual emergence of nonlinear envelope wave packets.  相似文献   

6.
It is shown that the Vakhnenko equation (VE) and the Ostrovsky–Hunter equation (OHE) are particular forms of the reduced Ostrovsky equation, and that they are related by a simple transformation. Explicit analytical periodic and solitary travelling-wave solutions of the OHE are derived by using a method used previously by Vakhnenko and the present author to solve the VE. These exact solutions of the OHE are related to some approximate solutions obtained by Boyd [Boyd JP. Ostrovsky and Hunter’s generic wave equation for weakly dispersive waves: matched asymptotic and pseudospectral study of the paraboidal travelling waves (corner and near-corner waves). Eur J Appl Math 2005;15:1–17].  相似文献   

7.
Approximation of solutions of fractional differential systems (FDS) of higher orders is studied for periodic boundary value problem (PBVP). We propose a numerical‐analytic technique to construct a sequence of functions convergent to the limit function, which is a solution of the given PBVP, if the corresponding determined equation has a root. We also study scalar fractional differential equations (FDE) with asymptotically constant nonlinearities leading to Landesman‐Lazer–type conditions.  相似文献   

8.
By the method of dynamical system,we construct the exact travelling wave solutions of a new Hamiltonian amplitude equation and the Ostrovsky equation.Based on this method,the new exact travelling wave solutions of the new Hamiltonian amplitude equation and the Ostrovsky equation,such as solitary wave solutions,kink and anti-kink wave solutions and periodic travelling wave solutions,are obtained,respectively.  相似文献   

9.
In this article, we apply the univariate multiquadric (MQ) quasi‐interpolation to solve the hyperbolic conservation laws. At first we construct the MQ quasi‐interpolation corresponding to periodic and inflow‐outflow boundary conditions respectively. Next we obtain the numerical schemes to solve the partial differential equations, by using the derivative of the quasi‐interpolation to approximate the spatial derivative of the differential equation and a low‐order explicit difference to approximate the temporal derivative of the differential equation. Then we verify our scheme for the one‐dimensional Burgers' equation (without viscosity). We can see that the numerical results are very close to the exact solution and the computational accuracy of the scheme is ??(τ), where τ is the temporal step. We can improve the accuracy by using the high‐order quasi‐interpolation. Moreover the methods can be generalized to the other equations. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

10.
A numerical method is proposed for computing time‐periodic and relative time‐periodic solutions in dissipative wave systems. In such solutions, the temporal period, and possibly other additional internal parameters such as the propagation constant, are unknown priori and need to be determined along with the solution itself. The main idea of the method is to first express those unknown parameters in terms of the solution through quasi‐Rayleigh quotients, so that the resulting integrodifferential equation is for the time‐periodic solution only. Then this equation is computed in the combined spatiotemporal domain as a boundary value problem by Newton‐conjugate‐gradient iterations. The proposed method applies to both stable and unstable time‐periodic solutions; its numerical accuracy is spectral; it is fast‐converging; its memory use is minimal; and its coding is short and simple. As numerical examples, this method is applied to the Kuramoto–Sivashinsky equation and the cubic‐quintic Ginzburg–Landau equation, whose time‐periodic or relative time‐periodic solutions with spatially periodic or spatially localized profiles are computed. This method also applies to systems of ordinary differential equations, as is illustrated by its simple computation of periodic orbits in the Lorenz equations. MATLAB codes for all numerical examples are provided in the Appendices to illustrate the simple implementation of the proposed method.  相似文献   

11.
Approximate stationary solutions of the Ostrovsky equation describing long weakly nonlinear waves in a rotating liquid are constructed. These solutions may be regarded as a periodic sequence of arcs of parabolas containing Korteweg-de Vries solitons at the junctures. Results of numerical computations of the dynamics of the approximate solutions obtained from the nonstationary Ostrovsky equation are presented. It is found that, in the presence of negative dispersion, the shape of a stationary wave is well predicted by the approximate theory, whereas the calculated wave velocity differs slightly from the theoretical value. The stationary solutions in media with positive dispersion are evidently unstable (at least for sufficiently strong rotation), and numerical computations demonstrate a complicated picture of nonstationary destruction.  相似文献   

12.
A temporally global solution, if it exists, of a nonautonomous ordinary differential equation need not be periodic, almost periodic or almost automorphic when the forcing term is periodic, almost periodic or almost automorphic, respectively. An alternative class of functions extending periodic and almost periodic functions which has the property that a bounded temporally global solution solution of a nonautonomous ordinary differential equation belongs to this class when the forcing term does is introduced here. Specifically, the class of functions consists of uniformly continuous functions, defined on the real line and taking values in a Banach space, which have pre-compact ranges. Besides periodic and almost periodic functions, this class also includes many nonrecurrent functions. Assuming a hyperbolic structure for the unperturbed linear equation and certain properties for the linear and nonlinear parts, the existence of a special bounded entire solution, as well the existence of stable and unstable manifolds of this solution are established. Moreover, it is shown that this solution and these manifolds inherit the temporal behaviour of the vector field equation. In the stable case it is shown that this special solution is the pullback attractor of the system. A class of infinite dimensional examples involving a linear operator consisting of a time independent part which generates a C0-semigroup plus a small time dependent part is presented and applied to systems of coupled heat and beam equations.  相似文献   

13.
In this paper, we consider an Ostrovsky type equation that includes the regularized short pulse, the Korteweg–deVries and the modified Korteweg–deVries ones. We prove the well-posedness of the solutions for the Cauchy problem associated with these equations.  相似文献   

14.
We are concerned with the Ostrovsky equation, which is derived from the theory of weakly nonlinear long surface and internal waves in shallow water under the presence of rotation. On the basis of the variational method, we show the existence of periodic traveling wave solutions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The well‐known shallow wave equation can be reduced to the Hirota equation with the aid of corresponding transformation. We discuss its explicit solutions, including dark soliton solution, multiple soliton solution, multiple singular solution, and periodic solutions.  相似文献   

16.
《Mathematische Nachrichten》2017,290(7):1113-1118
By means of a new change of variable we prove the existence of a positive 2π‐periodic solution for the Mathieu–Duffing type equations having its nonlinearity a super‐linear growth. As result we can guarantee the existence of 2π‐periodic solutions even assuming that the parameter of the associated Mathieu equation is in the contentious zone of resonance.  相似文献   

17.
In this article, our main goal is to render an idea to convert a nonlinear weakly singular Volterra integral equation to a non‐singular one by new fractional‐order Legendre functions. The fractional‐order Legendre functions are generated by change of variable on well‐known shifted Legendre polynomials. We consider a general form of singular Volterra integral equation of the second kind. Then the fractional Legendre–Gauss–Lobatto quadratures formula eliminates the singularity of the kernel of the integral equation. Finally, the Legendre pseudospectral method reduces the solution of this problem to the solution of a system of algebraic equations. This method also can be utilized on fractional differential equations as well. The comparison of results of the presented method and other numerical solutions shows the efficiency and accuracy of this method. Also, the obtained maximum error between the results and exact solutions shows that using the present method leads to accurate results and fast convergence for solving nonlinear weakly singular Volterra integral equations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
We use a new nonlinear method to study linear difference equations with variable coefficients in a non-trivial ring R. If the homogeneous part of the linear equation has a solution in the unit group of a ring with identity (a unitary solution), then we show that the equation decomposes into two linear equations of lower orders. This decomposition, known as a semiconjugate factorization in the nonlinear theory, is based on sequences of ratios of consecutive terms of a unitary solution. Such sequences, which may be called eigensequences, are well suited to variable coefficients; for instance, they provide a natural context for the expression of the Poincaré–Perron theorem. As applications, we obtain new results for linear difference equations with periodic coefficients and for linear recurrences in rings of functions (e.g. the recurrence for the modified Bessel functions).  相似文献   

19.
We establish conditions under which the existence of a periodic solution of a differential equation is preserved if a solution of the corresponding difference equation possesses the same property. We prove the convergence of periodic solutions of a system of difference equations to a periodic solution of a system of differential equations. Analogous problems are considered for bounded solutions. __________ Translated from Ukrains'kyi Matematychnyi Zhurnal, Vol. 57, No. 7, pp. 989–996, July, 2005.  相似文献   

20.
B. Mehri  M. Niksirat 《PAMM》2002,1(1):520-521
In this paper we concern with the nonlinear third order quasi‐linear system of ordinary differential equations as: X′′′ + Λ X′ = ϵ F(X, X′, X″) where X ∈ ℝn and Λ is a diagonal matrix. We obtain some simple sufficient conditions for the existence of periodic solution using theorem of Brouer's degree. As we showed earlier [1], the scalar form the (1) can be treated by the Implicit Function Theorem instead of Brouer degree. Also because of the possibility of rewriting a 2n + 1 order equation into a third order system by a simple transformation [2], we can obtain useful results for such equations too. The main problem for this kind of equations is the validity of the results for the parameter free problem, i.e. when ϵ = 1. We consider it by study of dynamic of curves formed by the initial conditions that force the system be periodic when ϵ starts to increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号