首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 384 毫秒
1.
The pharmaceutically relevant compound (RS,RS)-2-(2,4-difluorophenyl)butane-1,2,3-triol, an important intermediate in the production of different antifungal drugs, is synthesized in racemic form. For further use in the laboratory the compound has to be separated into its pure enantiomers. This work describes the different steps required to set up a chiral separation using intermittent simulated moving bed chromatography (I-SMB). Furthermore, the effect of feed concentration on the choice of the operating conditions is presented in the frame of the triangle theory. The experiments are carried out at increasing total feed concentration ranging from 3 to 15 g/L. The results demonstrate that a successful I-SMB separation could be carried out thus separating 4.5 g of the racemic mixture and fulfilling the specified purity specification of 98% for both enantiomers.  相似文献   

2.
A new approach for the synthesis of functionalized racemic 3,4-dihydroferroceno[c]pyridines via the Ritter reaction of 2-methyl-1-ferrocenylpropan-1-ol with nitriles in the presence of methansulfonic acid was developed. The scope and limitations of the reaction were evaluated. Selected racemic 3,4-dihydroferroceno[c]pyridines were successfully separated by preparative HPLC on a Chiralcel OD-H column. The absolute configuration of the enantiomers was determined by X-ray crystal structure analysis.  相似文献   

3.
Summary Two improved methods for the enantiomeric separation of racemic aminoglutethimide (±AG) and its acetylated metabolite (±AAG) have been developed. Direct liquid chromatographic resolution of the enantiomers of aminoglutethimide and its acetylated metabolite was accomplished using Chiralcel OD and Chiralcel OJ columns without any derivatization. Maximum resolution of 8.87 and 2.23 was obtained for the enantiomers of aminoglutethimide and its acetylated metabolite using a Chiralcel OD column, while maximum resolution of 10.34 and 7.01 was obtained for the enantiomers using a Chiralcel OJ column. Optimization of separation was obtained using different concentration of 2-propanol in hexane as a mobile phase.  相似文献   

4.
Two chiral stationary phases (CSPs) based on optically active (3,3′-diphenyl-1,1′-binaphthyl)-20-crown-6 covalently bonded to silica gel were utilized for the first time for the resolution of racemic β-amino acids using high performance liquid chromatography. All of the 10 β-amino acids tested were resolved on the CSP containing residual silanol-protecting n-octyl groups, while only five β-amino acids were resolved on the CSP containing residual silanol groups. The superiority of the CSP containing residual silanol-protecting n-octyl groups and the characteristic retention behaviors of the two enantiomers on the CSP were rationalized to stem from the removal of the residual silanol groups, which can otherwise induce the non-enantioselective retention of the analytes, and the improved lipophilicity of the CSP. The elution orders of the two enantiomers of β-amino acids were identical on the two CSPs and, consequently, it was concluded that the two CSPs were concluded to utilize identical chiral recognition mechanisms. The different elution orders of the analytes were proposed to be attributed to the presence or absence of π-π interactions between the CSP and analytes.  相似文献   

5.
The first synthesis of the macrocyclic natural product xestodecalactone A, a metabolite of a sponge-derived fungus, is described. By the use of methyl 5-hydroxyhexanoate in its R- or S-configured form, or as its racemate as the precursors, both enantiomers of xestodecalactone A as well as the racemic compound were obtained. Comparison of these synthetic products with the natural product by circular dichroism (CD) spectroscopy and by HPLC on a chiral phase revealed the natural product to have the (R)-configuration.  相似文献   

6.
A collection of about 300 microbes was surveyed for the ability to generate chiral secondary alcohols by enantioselective reduction of a series of alkyl aryl ketones. Microbial cultures demonstrating utility in reducing model ketones were arrayed in multi-well plates and used to rapidly identify specific organisms capable of producing chiral alcohols used as intermediates in the synthesis of several drug candidates. Approximately 60 cultures were shown to selectively reduce various ketones providing both the R and S enantiomers of the corresponding alcohols in 92-99% ee with yields up to 95% at 1-4 g/L. An alternative approach to chiral alcohols based on selective microbial oxidation of racemic alcohols is also reported. This study provides a useful reference for generating chiral alcohols by selective microbial bioconversion.  相似文献   

7.
The synthesis of both enantiomers of 1-(10-alkyl-10H-phenothiazin-3-yl)ethanols and their butanoates by enantiomer-selective acylation of racemic alcohols with the lipase from Pseudomonas fluorescens (L-AK) or/and by methanolysis of the corresponding racemic esters with lipase B from Candida antarctica (CaL-B) is described. The absolute configuration of the enantiomerically pure enantiomers was determined by X-ray crystallography.  相似文献   

8.
New enantiomerically pure macrocyclic aminals (2R,7R)- and (2S,7S)-1,8,10,12-tetraazatetracyclo[8.3.1.1.8,1202,7]pentadecane (4a and 4b) were obtained by a three component reaction between their respective pure enantiomer of trans-1,2-diaminocyclohexane, ammonia, and formaldehyde. Additionally, the X-ray structure of the racemic compound 4 and the specific rotations of the racemic and optically pure compounds were determined. To further understand the synthetic utilities of enantiomers 4a and 4b, Mannich-type reactions with 1H-benzotriazole were performed, affording (3aR,7aR)- and (3aS,7aS)-1,1′-{[2,3,3a,4,5,6,7,7a-octahydro-1H-1,3-benzimidazole-1,3-diyl]bis(methylene)}bis-1H-benzotriazole (9 and 10) and allowing for new possibilities related to the preparation of chiral ligands for asymmetric catalysis.  相似文献   

9.
The racemic compound (±)-N-(3,4-cis-3-decyl-1,2,3,4-tetrahydrophenanthren-4-yl)-3,5-dinitrobenzamide ((±)-1), an analogue of increased lipophilicity of the chiral selector (CS) contained in the Whelk-O® HPLC chiral stationary phase (CSP) has been resolved into its enantiomers by applying centrifugal partition chromatography (CPC). Considering the known enantioselectivity of the Whelk-O® CS for naproxen, and the reciprocity concept in enantioseparation, (S)-naproxen related compounds were tested as CSs. In the search for an adequate solvent system, the partition behaviour of the two solutes, CS and racemate, has been studied using several biphasic solvent mixtures. The optimal CS concentration and sample loading capacity were determined in the chosen solvent system. The search for an appropriate CS and solvent system, the scale-up and optimization of the enantiomer separation by CPC, as well as the rationale for the unexpected elution order of enantiomers, are here described. The comparison of the preparative CPC separation achieved with that in HPLC, using a CSP containing an analogous CS, resulted favourable to the former in terms of loading capacity, solvent consumption and throughput.  相似文献   

10.
The development of molecularly imprinted chiral stationary phases has traditionally been limited by the need for a chiral pure template. Paradoxically, availability of a chiral pure template largely defeats the purpose of developing a chiral stationary phase. To solve this paradox, imprinting of scalemic and racemic template mixtures was investigated using both chiral (N-α-bismethacryloyl-l-alanine) and achiral (N,O-bisacrylamide ethanolamine) crosslinkers. Imprinting of scalemic mixtures provided polymers capable of partial separation of Boc-tyrosine enantiomers with virtually the same results when using either the chiral or achiral crosslinker. However, the chiral crosslinker was required for chiral differentiation by the racemic imprinted polymers which were evaluated in both batch rebinding and chromatographic modes. Batch rebinding analysis revealed intersecting binding isotherms for the L- and D-Boc-tyrosine, indicating bias for the D or L enantiomer is concentration dependent. Partial chromatographic separation was achieved by the racemic imprinted polymers providing variable D or L bias in equal probability over multiple replicates of polymer synthesis. Correlation of enantiomer bias with the batch rebinding results and optimization of HPLC parameters are discussed.  相似文献   

11.
Hexachlorocyclotriphosphazene N3P3Cl6 and gem-disubstituted cyclotriphosphazene derivatives N3P3Cl4X2 (X = Ph, PhS, PhNH) were reacted with N-methyl-1,3-propanediamine and 3-amino-1-propanol to give compounds (9a-12a, 9b-12b) which exist as cis and trans geometric isomers and are two different racemic isomers, respectively to describe the stereogenic properties of a series of chiral cyclotriphosphazene compounds with two different centres of chirality. The geometric isomers were separated by column chromatography on silica gel and analysed by elemental analysis, mass spectrometry, and 31P and 1H NMR spectroscopies, and also the geometric forms (cis or trans) of 9b, 10a, 11a, 11b and 12a have been determined by the X-ray crystallography. The enantiomers of all racemic compounds have been analysed by the changes in 31P NMR spectra on addition of a Chiral Solvating Agent (CSA), (R)-(+)-2,2,2-trifluoro-1-(9′-anthryl)ethanol. On the other hand, the racemic forms of chiral cyclotriphosphazene derivatives have been confirmed by contribution of chiral HPLC methods which have been developed for this study.  相似文献   

12.
A capillary electrophoresis for the chiral separation of racemic methotrexate (rac-MTX) was developed and validated. The two enantiomers were separated by using fused-silica capillary and a running buffer containing phosphate and hydroxypropyl-β-cyclodextrin (HP-β-CD). Several parameters were studied, including concentration and pH of phosphate buffer, separation voltage, and type and concentration of CD. The quantitative ranges were 12.5-200.0 μM for each enantiomer. The intra- and inter-day relative standard deviations (R.S.D.) and relative errors (R.E.) (n=5) were all <5%. The detection limits were found to be about 4 μM (S/N=3, injection 5 s) at 280 nm. All recoveries were greater than 93%. This method was applied to the assay of l-MTX in pharmaceuticals.  相似文献   

13.
A bioanalytical method was developed for the simultaneous determination of paracetamol and ketorolac enantiomers in human plasma using two-dimensional liquid chromatography–mass spectrometry. Separation was first achieved in a reversed-phase C18 column by using a gradient solvent system consisting of 0.1% aqueous formic acid and acetonitrile (ACN). The effluent between 8.9 and 9.9 min, corresponding to phenacetin and racemic ketorolac peaks, was transferred to a polysaccharide-based chiral column (ChiralPak AD-RH) by using a six-port switching valve. Ketorolac enantiomers were subsequently separated on the chiral column using an isocratic mobile phase composed of ACN/0.1% formic acid 50:50 (v/v). The total run-time was less than 18 min. This innovative strategy prolongs the lifetime of chiral columns by avoiding damages due to the sample matrix. The detection was carried out with an ion trap mass spectrometer equipped with an electrospray ionisation source. The tested ranges were 0.05–20 μg/ml for paracetamol and 0.005–2 μg/ml for each ketorolac enantiomer. This method was fully validated and showed good performances in terms of trueness (80–110%) and precision (6.7–13.2%). The mean extraction recoveries were 60%, 72% and 76% for paracetamol, R-ketorolac and S-ketorolac, respectively. Finally, this procedure was successfully applied to a pharmacokinetic study.  相似文献   

14.
In order to enhance the sensitivity and to develop a faster direct method for plasma and urine quantification of racemic ketorolac, its metabolites (p-hydroxy-ketorolac and ketorolac glucuronides) and ketorolac enantiomers, we developed an extraction procedure based on solid-phase extraction combined with specific and fast chromatographic separation. Extraction and chromatography resulted in cleaner chromatograms without interfering compounds. In both plasma and urine, linearity of the standard curves for racemic ketorolac and p-hydroxy-ketorolac was validated in the concentration range 0.025–10 mg L?1, while for ketorolac enantiomers in the concentration range 0.025–5 mg L?1. The lower limit of quantification was two times lower than in earlier described methods. The developed method was suitable for direct quantification of racemic ketorolac, p-hydroxy-ketorolac and ketorolac enantiomers in plasma and urine samples in women at delivery and in postpartum, enabling us to document significant intra-individual differences in pharmacokinetics between these physiological states.  相似文献   

15.
Helical polymers have attracted a great deal of attention and been extensively investigated due to their various applications.One of the most important applications of helical polymers is chiral recognition and resolution of enantiomers for the reason that a pair of enantiomers is commonly with different physiological and toxicological behaviors in biological systems.Helical polymers usually present unexpected high chiral recognition ability to a variety of racemic compounds.What's more,the chiral recognition and resolution abilities of the system are dependent on the highly ordered helical structures of the helical polymers.This mini review mainly focuses on the recent progress in chiral recognition and resolution based on helical polymers.The synthetic methodology for helical polymers is firstly discussed briefly.Then recent advances of chiral recognition and resolution systems based on helical polymers,especially polyacetylenes and polyisocyanides,are described.We hope this mini review will inspire more interest in developing helical polymers and encourage further advances in chiral-related disciplines.  相似文献   

16.
Kenji Mori  Hiroko Iwasawa 《Tetrahedron》1980,36(15):2209-2213
The both enantiomers of threo-2-amino-3-methylhexanoic acid were prepared by resolving its racemic N-acetate with Aspergillus acylase. The amino acid enantiomers were converted to optically active forms of threo-4-methylheptan-3-ol, a pheromone component of Scolytus multistriatus.  相似文献   

17.
This work reports two methods developed for the separation and determination of the enantiomers of the new alkaloid malacitanine (MLC) and the determination of the enantiomeric purity in mixtures. First, the isomers were separated using a Chirex 3020 (250 mm × 4.6 mm, 5 μm) chiral column with a mobile phase of cyclohexane–1,2‐dichloroethane–ethanol–trifluoroacetic acid (64:30:6:0.6, v/v/v/v) at a flow rate of 1 mL/min and fluorimetric detection. Obtained retention times were 12.4 and 15.9 min (+ and ?) with a resolution Rs of 1.13. Relative standard deviations (RSDs) were 2.5 and 2.4% at the 0.5‐μg level (four determinations). Second, a nonenantioselective procedure for the determination of enantiomeric purity of MLC using a Lichrospher ® Si‐60 (250 mm × 5 mm, 5 μm) normal phase with a mobile phase of 100% ethanol at a flow rate of 0.9 mL/min coupled to two detectors in series, fluorimetric and polarimetric. RSD of 3.3% was obtained. Calculated enantiomeric purity by chiral chromatography gave 48.6% (?)‐MLC in the near racemic product. Using polarimetric signal of the nonseparated enantiomers and comparing the slopes of the calibration curves (enantiomers) from the racemic product gave 47.8% (?)‐MLC content. A study of accuracy of (?)‐MLC gave recoveries from 98.3 to 100.7%.  相似文献   

18.
The agro-industry uses large quantities of chiral pesticides to mitigate the detrimental effects of pests on crops. Pesticides play a very important role of insuring food security in the world but this benefit may be eroded if principles of green chemistry are not embraced during their synthesis, application and analysis. Commercial chiral pesticide formulations are, usually, synthesised and sold as racemates. The enantiomers of the chiral pesticides in these racemic mixtures usually have enantioselective bioactivities on target organisms. One enantiomer, usually, will be active on the target organism while others are inactive and are discharged into the environment, posing serious pollution problems. This is a serious environmental problem and can be rectified through embracing general principles of green chemistry. This paper reviews the aspects that can enhance greenness during synthesis and the subsequent application of chiral pesticides during pest management in the agro-industry. Particular emphasis is placed on stereo-selective synthesis of chiral pesticides and the application of their enantiopure formulations. The green aspects during chromatographic separation of enantiomers of chiral pesticides are also discussed. These include the use of green mobile and chiral stationary phases during chromatographic analysis of chiral pesticides.  相似文献   

19.
The resolution of racemates is revolutionized with the method presented here, in which mixtures (“families”) of structurally and stereochemically related resolving agents are used to precipitate salts of acidic or basic racemates rapidly and dependably. The racemate is usually separated in a single operation into enantiomers—the enantiomeric excesses and yields are good to excellent. Reagent mixtures with racemic or achiral components have also been developed.  相似文献   

20.
Direct crystallization is a convenient and generally efficient method to increase the optical purity of partially resolved enantiomers. The design of chiral purification processes based on crystallization requires measurement of solubility of all stable phases, i.e. enantiomers and racemic mixtures, in the process solvent. Enantiomeric systems have been classified by the nature of the solid phases formed as racemic compounds, conglomerates or solid solutions. In rare cases, however, enantiomers form crystalline addition compounds with a stoichiometry other than 1(S):1(R). These structures are generally known as “anomalous racemates”. The solubility and melting point diagrams of each type of enantiomeric system exhibit characteristic features which have significant implications on the efficiency of the crystallization to enhance optical purity. In this study, we report the formation of a non-equimolar 3:1 addition compound in the R/S 3-hydroxy-4-(2,4,5-trifluorophenyl) butanoic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号