共查询到20条相似文献,搜索用时 15 毫秒
1.
Mengxiong Sun Chenghao Zhou Hui Zeng Nahum Puebla‐Osorio Elisabetta Damiani Jian Chen Hongsheng Wang Guodong Li Fei Yin Liancheng Shan Dongqing Zuo Yuxin Liao Zhuoying Wang Longpo Zheng Yingqi Hua Zhengdong Cai 《Photochemistry and photobiology》2015,91(3):533-544
This study was carried out to investigate the anti‐tumor effect and mechanism of hiporfin‐mediated photodynamic therapy (hiporfin‐PDT) in osteosarcoma. We found that hiporfin accumulated mainly in the cytoplasm of osteosarcoma cells in a time and concentration‐dependent manner. Hiporfin‐PDT inhibited the proliferation, induced apoptosis and produced cell cycle arrest at G2M in osteosarcoma cell lines. Hiporfin‐PDT increased the expression of cleaved‐caspase‐3, cleaved PARP‐1, Bax and RIP1 while it decreased the expression of Bcl‐2; in addition, low concentration of hiporfin increased LC3 conversion. Furthermore, cell death caused by hiporfin‐PDT could be rescued by Nec‐1 but not by Z‐VAD‐FMK. Production of reactive oxygen species was increased after hiporfin‐PDT. In vivo studies showed a significant decrease in tumor volume and weight after hiporfin‐PDT in all three tumor mouse models investigated (subcutaneous and orthotopic). Histological analysis showed widespread cell apoptosis and necrosis after treatment. Immunohistochemistry also showed upregulation of cleaved‐caspase‐3 and downregulation of Bcl‐2 after hiporfin‐PDT. These results indicate that hiporfin‐PDT exhibits a killing effect in osteosarcoma both in vitro and in vivo, which is associated with apoptosis and necroptosis, while autophagy plays a protective role. All these findings shed light on a potential future clinical use for hiporfin in the treatment of osteosarcoma. 相似文献
2.
Xuezhao Li Jinguo Wu Lei Wang Cheng He Liyong Chen Yang Jiao Chunying Duan 《Angewandte Chemie (International ed. in English)》2020,59(16):6420-6427
The development of DNA‐targeted photodynamic therapy (PDT) agents for cancer treatment has drawn substantial attention. Herein, the design and synthesis of dinuclear IrIII‐containing luminescent metallohelices with tunable PDT efficacy that target mitochondrial DNA in cancer cells are reported. The metallohelices are fabricated using dynamic imine‐coupling chemistry between aldehyde end‐capped fac‐Ir(ppy)3 handles and linear alkanediamine spacers, followed by reduction of the imine linkages. The length and odd–even character of the diamine alkyl linker determined the stereochemistry (helicates vs. mesocates). Compared to the helicates, the mesocates exhibit improved apoptosis‐induction upon white‐light irradiation. Molecular docking studies indicate that the mesocate with a proper length of diamine spacers shows stronger affinity for the minor groove of DNA. This study highlights the potential of DNA‐targeting IrIII‐containing metallohelices as PDT agents. 相似文献
3.
Pingyu Zhang Huaiyi Huang Samya Banerjee Guy J. Clarkson Chen Ge Cinzia Imberti Peter J. Sadler 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(8):2372-2376
An organoiridium–albumin bioconjugate ( Ir1‐HSA ) was synthesized by reaction of a pendant maleimide ligand with human serum albumin. The phosphorescence of Ir1‐HSA was enhanced significantly compared to parent complex Ir1 . The long phosphorescence lifetime and high 1O2 quantum yield of Ir1‐HSA are highly favorable properties for photodynamic therapy. Ir1‐HSA mainly accumulated in the nucleus of living cancer cells and showed remarkable photocytotoxicity against a range of cancer cell lines and tumor spheroids (light IC50; 0.8–5 μm , photo‐cytotoxicity index PI=40–60), while remaining non‐toxic to normal cells and normal cell spheroids, even after photo‐irradiation. This nucleus‐targeting organoiridium‐albumin is a strong candidate photosensitizer for anticancer photodynamic therapy. 相似文献
4.
Dong Cui Jiaguo Huang Xu Zhen Jingchao Li Yuyan Jiang Kanyi Pu 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(18):5981-5985
Photodynamic therapy (PDT) holds great promise for cancer therapy; however, its efficacy is often compromised by tumor hypoxia. Herein, we report the synthesis of a semiconducting polymer nanoprodrug (SPNpd) that not only efficiently generates singlet oxygen (1O2) under NIR photoirradiation but also specifically activates its chemotherapeutic action in hypoxic tumor microenvironment. SPNpd is self‐assembled from a amphiphilic polymer brush, which comprises a light‐responsive photodynamic backbone grafted with poly(ethylene glycol) and conjugated with a chemodrug through hypoxia‐cleavable linkers. The well‐defined and compact nanostructure of SPNpd (30 nm) enables accumulation in the tumor of living mice. Owing to these features, SPNpd exerts synergistic photodynamic and chemo‐therapy, and effectively inhibits tumor growth in a xenograft tumor mouse model. This study represents the first hypoxia‐activatable phototherapeutic polymeric prodrug system with a high potential for cancer therapy. 相似文献
5.
Highly Efficient,Conjugated‐Polymer‐Based Nano‐Photosensitizers for Selectively Targeted Two‐Photon Photodynamic Therapy and Imaging of Cancer Cells 下载免费PDF全文
Dr. Xiaoqin Shen Shuang Li Dr. Lin Li Prof. Shao Q. Yao Prof. Qing‐Hua Xu 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(5):2214-2221
Two‐photon photodynamic therapy (2P‐PDT) is a promising noninvasive treatment of cancers and other diseases with three‐dimensional selectivity and deep penetration. However, clinical applications of 2P‐PDT are limited by small two‐photon absorption (TPA) cross sections of traditional photosensitizers. The development of folate receptor targeted nano‐photosensitizers based on conjugated polymers is described. In these nano‐photosensitizers, poly{9,9‐bis[6′′‐(bromohexyl)fluorene‐2,7‐ylenevinylene]‐co‐alt‐1,4‐(2,5‐dicyanophenylene)}, which is a conjugated polymer with a large TPA cross section, acts as a two‐photon light‐harvesting material to significantly enhance the two‐photon properties of the doped photosensitizer tetraphenylporphyrin (TPP) through energy transfer. These nanoparticles displayed up to 1020‐fold enhancement in two‐photon excitation emission and about 870‐fold enhancement in the two‐photon‐induced singlet oxygen generation capability of TPP. Surface‐functionalized folic acid groups make these nanoparticles highly selective in targeting and killing KB cancer cells over NIH/3T3 normal cells. The 2P‐PDT activity of these nanoparticles was significantly improved, potentially up to about 1000 times, as implied by the enhancement factors of two‐photon excitation emission and singlet oxygen generation. These nanoparticles could act as novel two‐photon nano‐photosensitizers with combined advantages of low dark cytotoxicity, targeted 2P‐PDT with high selectivity, and simultaneous two‐photon fluorescence imaging capability; these are all required for ideal two‐photon photosensitizers. 相似文献
6.
A Size‐Reducible Nanodrug with an Aggregation‐Enhanced Photodynamic Effect for Deep Chemo‐Photodynamic Therapy 下载免费PDF全文
Chendong Ji Qin Gao Xinghua Dong Prof. Wenyan Yin Prof. Zhanjun Gu Prof. Zhihua Gan Prof. Yuliang Zhao Prof. Meizhen Yin 《Angewandte Chemie (International ed. in English)》2018,57(35):11384-11388
Fluorescent dyes with multi‐functionality are of great interest for photo‐based cancer theranostics. However, their low singlet oxygen quantum yield impedes their potential applications for photodynamic therapy (PDT). Now, a molecular self‐assembly strategy is presented for a nanodrug with a remarkably enhanced photodynamic effect based on a dye‐chemodrug conjugate. The self‐assembled nanodrug possesses an increased intersystem crossing rate owing to the aggregation of dye, leading to a distinct singlet oxygen quantum yield (Φ(1O2)). Subsequently, upon red light irradiation, the generated singlet oxygen reduces the size of the nanodrug from 90 to 10 nm, which facilitates deep tumor penetration of the nanodrug and release of chemodrug. The nanodrug achieved in situ tumor imaging and potent tumor inhibition by deep chemo‐PDT. Our work verifies a facile and effective self‐assembly strategy to construct nanodrugs with enhanced performance for cancer theranostics. 相似文献
7.
Dr. Xuezhao Li Jinguo Wu Dr. Lei Wang Prof. Cheng He Dr. Liyong Chen Dr. Yang Jiao Prof. Chunying Duan 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(16):6482-6489
The development of DNA-targeted photodynamic therapy (PDT) agents for cancer treatment has drawn substantial attention. Herein, the design and synthesis of dinuclear IrIII-containing luminescent metallohelices with tunable PDT efficacy that target mitochondrial DNA in cancer cells are reported. The metallohelices are fabricated using dynamic imine-coupling chemistry between aldehyde end-capped fac-Ir(ppy)3 handles and linear alkanediamine spacers, followed by reduction of the imine linkages. The length and odd–even character of the diamine alkyl linker determined the stereochemistry (helicates vs. mesocates). Compared to the helicates, the mesocates exhibit improved apoptosis-induction upon white-light irradiation. Molecular docking studies indicate that the mesocate with a proper length of diamine spacers shows stronger affinity for the minor groove of DNA. This study highlights the potential of DNA-targeting IrIII-containing metallohelices as PDT agents. 相似文献
8.
Zengxia Zhao Yuning Han Chenghong Lin Dong Hu Fang Wang Prof. Xiaolan Chen Prof. Zhong Chen Prof. Nanfeng Zheng 《化学:亚洲杂志》2012,7(4):830-837
Lanthanide‐doped upconversion nanoparticles (UCNPs) have attracted considerable attention for their application in biomedicine. Here, silica‐coated NaGdF4:Yb,Er/NaGdF4 nanoparticles with a tetrasubstituted carboxy aluminum phthalocyanine (AlC4Pc) photosensitizer covalently incorporated inside the silica shells were prepared and applied in the photodynamic therapy (PDT) and magnetic resonance imaging (MRI) of cancer cells. These UCNP@SiO2(AlC4Pc) nanoparticles were uniform in size, stable against photosensitizer leaching, and highly efficient in photogenerating cytotoxic singlet oxygen under near‐infrared (NIR) light. In vitro studies indicated that these nanoparticles could effectively kill cancer cells upon NIR irradiation. Moreover, the nanoparticles also demonstrated good MR contrast, both in aqueous solution and inside cells. This is the first time that NaGdF4:Yb,Er/NaGdF4 upconversion‐nanocrystal‐based multifunctional nanomaterials have been synthesized and applied in PDT. Our results show that these multifunctional nanoparticles are very promising for applications in versatile imaging diagnosis and as a therapy tool in biomedical engineering. 相似文献
9.
Isabella Reiter Giinter Schwamberger Barbara Krammer 《Photochemistry and photobiology》1997,66(3):384-388
Abstract— In vitro photodynamic treatment of YAC-1 murine T-lymphoma cells with the hematoporphyrin derivative Photosan 3 and red light resulted in dose-dependent phototoxicity. Photodynamic pretreatment, however, did not render these cells more susceptible to macrophage-me-diated tumor cytotoxicity or the cytotoxic effects of mac-rophage-derived antitumor mediators like tumor necrosis factor aL (TNF-aL) or interferon bT (IFN-bT). Independent of the degree of photosensitization used, the cytotoxicity values obtained with macrophages or the different mediators were shifted by the respective values for phototoxicity, suggesting these effects to be additive and thus not interdependent. These data show that while higher overall tumor cytotoxicity can be achieved by a combination of photodynamic treatment and macro-phage-mediated tumor destruction, this apparently is not a result of enhanced sensitivity of photodynamically treated tumor cells to macrophage antitumor mechanisms in general 相似文献
10.
采用弱配体柠檬酸钠修饰的金纳米花为介导材料,考察了其对人喉癌Hep-2细胞的NIR热疗作用,结果表明,这种金纳米花材料具有良好的NIR光热转换性能,可有效抑制Hep-2细胞增殖. 相似文献
11.
Role of the Immune System in Mediating the Antitumor Effect of Benzophenothiazine Photodynamic Therapy 总被引:8,自引:0,他引:8
Jill A. Hendrzak-Henion Terrence L. Knisely Louis Cincotta Eric Cincotta Anthony H. Cincotta 《Photochemistry and photobiology》1999,69(5):575-581
The role of the host immune system in contributing to tumor regression following benzophenothiazine photodynamic therapy (PDT) was examined. Photodynamic therapy with 2-iodo-5-ethylamino-9-diethylaminobenzo[a]-phenothiazinium chloride (2I-EtNBS) eradicated EMT-6 mammary fibrosarcomas in 75-100% of treated mice. In contrast, PDT failed to inhibit tumor growth in T-cell-deficient nude mice. Furthermore, T-cell depletion studies with anti-CD8 antibody revealed that the CD8+ T-cell population was critical for an effective PDT response (tumor volume 14 days post-PDT: 262 mm3 vs 59 mm3 in controls; P < 0.01). Because anti-CD4 antibody inhibited tumor growth in the absence of PDT, the role of CD4+ T cells remains unclear. Depletion of natural killer (NK) cells in vivo with anti-asialo-GM1 antibody significantly reduced a suboptimal PDT effect relative to vehicle controls (tumor volume 13 days post-PDT: 513 mm3 vs 85 mm3, respectively; P < 0.001). However, splenic NK cells obtained from PDT-treated tumor-bearing mice were not cytotoxic in vitro against EMT-6 cells, suggesting that NK cells contribute to the PDT effect in vivo by an indirect mechanism. In addition, when mice with complete tumor regression following PDT were rechallenged 28 days later with 5 x 10(5) EMT-6 cells, tumor growth was significantly inhibited as compared to controls (tumor volume 40 days postrechallenge: 137 mm3 vs 833 mm3 in controls; P < 0.03; percent animals without tumor in five experiments: 67% vs 8% in controls). Collectively, these results demonstrate that CD8+ T cells are required to prevent tumor regrowth after 2I-EtNBS-PDT, NK cells contribute to this response and such PDT can elicit protective antitumor immunity. 相似文献
12.
Direct Photocontrol of Peptidomimetics: An Alternative to Oxygen‐Dependent Photodynamic Cancer Therapy 下载免费PDF全文
Dr. Oleg Babii Dr. Sergii Afonin Prof. Liudmyla V. Garmanchuk Dr. Viktoria V. Nikulina Tetiana V. Nikolaienko Olha V. Storozhuk Dmytro V. Shelest Dr. Olga I. Dasyukevich Prof. Liudmyla I. Ostapchenko Dr. Volodymyr Iurchenko Dr. Sergey Zozulya Prof. Anne S. Ulrich Prof. Igor V. Komarov 《Angewandte Chemie (International ed. in English)》2016,55(18):5493-5496
Conventional photodynamic treatment strategies are based on the principle of activating molecular oxygen in situ by light, mediated by a photosensitizer, which leads to the generation of reactive oxygen species and thereby causes cell death. A diarylethene‐derived peptidomimetic is presented that is suitable for photodynamic cancer therapy without any involvement of oxygen. This light‐sensitive molecule is not a mediator but is itself the cytotoxic agent. As a derivative of the cyclic amphiphilic peptide gramicidin S, the peptidomimetic exists in two thermally stable photoforms that are interconvertible by light of different wavelengths. The isomer generated by visible light shows much stronger toxicity against tumor cells than the UV‐generated isomer. First in vivo applications are demonstrated on a tumor animal model to illustrate how the peptidomimetic can be administered in the less toxic form and then activated locally in a solid tumor by visible light. 相似文献
13.
Lichen Yin Yongbing Chen Zhonghai Zhang Qian Yin Nan Zheng Jianjun Cheng 《Macromolecular rapid communications》2015,36(5):483-489
A targeted micellar drug delivery system is developed from a biocompatible and biodegradable amphiphilic polyester, poly(Lac‐OCA)‐b‐(poly(Tyr(alkynyl)‐OCA)‐g‐mannose) (PLA‐b‐(PTA‐g‐mannose), that is synthesized via controlled ring‐opening polymerization of O‐carboxyanhydride (OCA) and highly efficient “Click” chemistry. Doxorubicin (DOX), a model lipophilic anticancer drug, can be effectively encapsulated into the micelles, and the mannose moiety allows active targeting of the micelles to cancer cells that specifically express mannose receptors, which thereafter enhances the anticancer efficiency of the drug. Comprised entirely of biodegradable and biocompatible polyesters, this micellar system demonstrates promising potentials for targeted drug delivery and cancer therapy.
14.
Zhiyong Liu Tianye Cao Yudong Xue Mengting Li Mengsi Wu Jonathan W. Engle Qianjun He Weibo Cai Minbo Lan Weian Zhang 《Angewandte Chemie (International ed. in English)》2020,59(9):3711-3717
Nanocarriers are employed to deliver photosensitizers for photodynamic therapy (PDT) through the enhanced penetration and retention effect, but disadvantages including the premature leakage and non‐selective release of photosensitizers still exist. Herein, we report a 1O2‐responsive block copolymer (POEGMA‐b‐P(MAA‐co‐VSPpaMA) to enhance PDT via the controllable release of photosensitizers. Once nanoparticles formed by the block copolymer have accumulated in a tumor and have been taken up by cancer cells, pyropheophorbide a (Ppa) could be controllably released by singlet oxygen (1O2) generated by light irradiation, enhancing the photosensitization. This was demonstrated by confocal laser scanning microscopy and in vivo fluorescence imaging. The 1O2‐responsiveness of POEGMA‐b‐P(MAA‐co‐VSPpaMA) block copolymer enabled the realization of self‐amplified photodynamic therapy by the regulation of Ppa release using NIR illumination. This may provide a new insight into the design of precise PDT. 相似文献
15.
16.
17.
Seung Mok Yang Dong Won Lee Hye Ji Park Moon Hwa Kwak Jae Myung Park Myung‐Gyu Choi 《Photochemistry and photobiology》2019,95(3):833-838
Recently, increased attention has been focused on endoscopic disinfection after outbreaks of drug‐resistant infections associated with gastrointestinal endoscopy. The aims of this study were to investigate the bactericidal efficacy of methylene blue (MB)‐based photodynamic therapy (PDT) on Pseudomonas aeruginosa (P. aeruginosa), which is the major cause of drug‐resistant postendoscopy outbreak, and to assess the synergistic effects of hydrogen peroxide addition to MB‐based PDT on biofilms. In planktonic state of P. aeruginosa, the maximum decrease was 3 log10 and 5.5 log10 at 20 and 30 J cm?2, respectively, following MB‐based PDT. However, the maximum reduction of colony forming unit (CFU) was decreased by 2.5 log10 and 3 log10 irradiation on biofilms. The biofilm formation was significantly inhibited upon irradiation with MB‐based PDT. When the biofilm state of P. aeruginosa was treated with MB‐based PDT with hydrogen peroxide, the CFU was significantly decreased by 6 log10 after 20 J cm?2, by 7 log10 after 30 J cm?2 irradiation, suggesting significantly higher efficacy than MB‐based PDT alone. The implementation of the combination of hydrogen peroxide with MB‐based PDT through working channels might be appropriate for preventing early colonization and biofilm formation in the endoscope and postendoscopy outbreak. 相似文献
18.
Dr. Xingshu Li Nahyun Kwon Tian Guo Prof. Zhuang Liu Prof. Juyoung Yoon 《Angewandte Chemie (International ed. in English)》2018,57(36):11522-11531
Despite its clinical promise, photodynamic therapy (PDT) suffers from a key drawback associated with its oxygen‐dependent nature, which limits its effective use against hypoxic tumors. Moreover, both PDT‐mediated oxygen consumption and microvascular damage further increase tumor hypoxia and, thus, impede therapeutic outcomes. In recent years, numerous investigations have focused on strategies for overcoming this drawback of PDT. These efforts, which are summarized in this review, have produced many innovative methods to avoid the limits of PDT associated with hypoxia. 相似文献
19.
光动力疗法作为一种非侵入性治疗手段已广泛应用于肿瘤的临床治疗。然而其疗效却深受紫外-可见光组织穿透深度的限制。镧系掺杂上转换纳米颗粒可以将近红外光转换为紫外-可见光,被广泛用于与传统光敏剂结合实现更为高效的光动力治疗。近年来,以上转换纳米颗粒和光动力疗法为基础的肿瘤联合治疗研究备受关注,本文重点介绍了该领域的最新研究进展,并对其未来发展方向作出了展望。 相似文献
20.
《中国化学》2017,35(9):1445-1451
Graphene oxide (GO ) and its functionalized derivatives have attracted increasing attention in medical treatment. Herein, a reduction sensitive PEI‐GO ‐SS ‐TPP was synthesized for photodynamic therapy. More than 80% porphyrin release was observed in the presence of 10 mmol•L−1 DTT in one day. The confocal laser scanning microscopy confirmed that the cell uptake efficiency of PEI‐GO‐SS‐TPP was remarkably enhanced as compared to free porphyrin which was significantly dependent on incubation time. For photodynamic therapy, GSH‐OEt could effectively increase the photodynamic therapy efficiency of PEI‐GO ‐SS ‐TPP . Compared with free porphyrin, the toxicity from PEI‐GO ‐SS ‐TPP is much higher with a low IC50 (2.1 µg/mL ) value. All results indicate that the PEI‐GO ‐SS ‐TPP PSs are promising for photodynamic therapy. 相似文献