首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In spite of recent advances towards understanding the mechanism of firefly bioluminescence, there is no consensus about which oxyluciferin (OxyLH2) species are the red and yellow‐green emitters. The crystal structure of Luciola cruciata luciferase (LcLuc) revealed different conformations for the various steps of the bioluminescence reaction, with different degrees of polarity and rigidity of the active‐site microenvironment. In this study, these different conformations of luciferase (Luc) are simulated and their effects on the different chemical equilibria of OxyLH2 are investigated as a function of pH by means of density functional theory with the PBE0 functional. In particular, the thermodynamic properties and the absorption spectra of each species, as well as their relative stabilities in the ground and excited states, were computed in the different conformations of Luc. From the calculations it is possible to derive the acid dissociation and tautomeric constants, and the corresponding distribution diagrams. It is observed that the anionic keto form of OxyLH2 is both the red and the yellow‐green emitter. Consequently, the effect of Luc conformations on the structural and electronic properties of the Keto‐(?1) form are studied. Finally, insights into the Luc‐catalyzed light‐emitting reaction are derived from the calculations. The multicolor bioluminescence can be explained by interactions of the emitter with active‐site molecules, the effects of which on light emission are modulated by the internal dielectric constant of the different conformations. These interactions can suffer also from rearrangement due to entry of external solvent and changes in the protonation state of some amino acid residues and adenosine monophosphate (AMP).  相似文献   

2.
Beetle luciferases (including those of the firefly) use the same luciferin substrate to naturally display light ranging in color from green (lambda(max) similar 530 nm) to red (lambda(max) similar 635 nm). The original mechanism of bioluminescence color determination advanced by White and co-workers was based on the concept that the keto and enol tautomers of the emitter oxyluciferin produce red and green light, respectively. Alternatively, McCapra proposed that color variation is associated with conformations of the keto form of excited-state oxyluciferin. We have prepared the adenylate of D-5,5-dimethylluciferin and shown that it is transformed into the putative emitter 5,5-dimethyloxyluciferin in bioluminescence reactions catalyzed by luciferases from Photinus pyralis and the green-emitting click beetle. 5,5-Dimethyloxyluciferin is constrained to exist in the keto form and fluoresces in the red. However, bioluminescence spectra revealed that green light emission was produced by the firefly enzyme and red light was observed with the click beetle protein. These results, augmented with steady-state kinetic studies, may be taken as the first experimental support for McCapra's mechanism of firefly bioluminescence color or any other proposal that requires only a single keto form of oxyluciferin.  相似文献   

3.
Luciferase of copepod Metridia longa (MLuc) is a naturally secreted enzyme catalyzing the oxidative decarboxylation of coelenterazine with the emission of light. To date, three nonallelic isoforms of different lengths (17–24 kDa) for M. longa luciferase have been cloned. All the isoforms are single‐chain proteins consisting of a 17‐residue signal peptide for secretion, variable N‐terminal part and conservative C‐terminus responsible for luciferase activity. In contrast to other bioluminescent proteins containing a lot of aromatic residues which are frequently involved in light emission reaction, the C‐terminal part of MLuc contains only four Phe, two Tyr, one Trp and two His residues. To figure out whether Tyr residues influence bioluminescence, we constructed the mutants with substitution of Tyr to Phe (Y72F and Y80F). Tyrosine substitutions do not eliminate the ability of luciferase to bioluminescence albeit significantly reduce relative specific activity and change bioluminescence kinetics. In addition, the Tyr replacements have no effect on bioluminescence spectrum, thereby indicating that tyrosines are not involved in the emitter formation. However, as it was found that the intrinsic fluorescence caused by Tyr residues is quenched by a reaction substrate, coelenterazine, in concentration‐dependent manner, we infer that both tyrosine residues are located in the luciferase substrate‐binding cavity.  相似文献   

4.
The activity of the bimodal fluorescent protein (bmFP) (lambda max, 488 and 517 nm) in the in vitro luciferase reaction has been studied. The bmFP that is produced by Photobacterium phosphoreum strain bmFP is a dimer of two homologous subunits binding four riboflavin 5'-phosphate (FMN)-myristate chromophores. The addition of bmFP to the luciferase reaction in the presence of the lumazine protein prevented the lumazine protein-induced blue shift in the emission band. The bmFP reduced electrochemically serves as a substrate in the luciferase reaction in the absence of added FMN, resulting in light emission with a single maximum at about 487 nm. The bmFP was also active in lieu of FMN in the NADH/FMN oxidoreductase (flavin reductase)-luciferase coupled bioluminescence reaction in the absence of added FMN. In the coupled reaction, bioluminescence with the isolated bmFP chromophore was weaker than that with the holo-bmFP. After bmFP was used in luciferase reactions initiated either chemically or electrochemically, it was still capable of emitting bimodal fluorescence.  相似文献   

5.
The structure elucidation and synthesis of the luciferin from the recently discovered luminous earthworm Fridericia heliota is reported. This luciferin is a key component of a novel ATP‐dependent bioluminescence system. UV, fluorescence, NMR, and HRMS spectroscopy studies were performed on 0.005 mg of the isolated substance and revealed four isomeric structures that conform to spectral data. These isomers were chemically synthesized and one of them was found to produce light when reacted with a protein extract from F. heliota. The novel luciferin was found to have an unusual extensively modified peptidic nature, thus implying an unprecedented mechanism of action.  相似文献   

6.
Dinoflagellates are the most ubiquitous luminescent protists in the marine environment and have drawn much attention for their crucial roles in marine ecosystems. Dinoflagellate bioluminescence has been applied in underwater target detection. The luminescent system of dinoflagellates is a typical luciferin–luciferase one. However, the excited‐state oxyluciferin is not the light emitter of dinoflagellate bioluminescence as in most luciferin–luciferase bioluminescent organisms. The oxyluciferin of bioluminescent dinoflagellates is not fluorescent, whereas its luciferin emits bright fluorescence with similar wavelength of the bioluminescence. What is the light emitter of dinoflagellate bioluminescence and what is the chemical process of the light emission like? These questions have not been answered by the limited experimental evidence so far. In this study, for the first time, the density functional calculation is employed to investigate the geometries and properties of luciferin and oxyluciferin of bioluminescent dinoflagellate. The calculated results agree with the experimental observations and indicate the luciferin or its analogue, rather than oxyluciferin, is the bioluminophore of dinoflagellate bioluminescence. A rough mechanism involving energy transfer is proposed for dinoflagellate bioluminescence.  相似文献   

7.
Is the resonance‐based anionic keto form of oxyluciferin the chemical origin of multicolor bioluminescence? Can it modulate green into red luminescence? There is as yet no definitive answer from experiment or theory. The resonance‐based anionic keto forms of oxyluciferin have been proposed as a cause of multicolor bioluminescence in the firefly. We model the possible structures by adding sodium or ammonium cations and investigating the ground‐ and excited‐state geometries as well as the electronic absorption and emission spectra. A role for the resonance structures is obvious in the gas phase. The absorption and emission spectra of the two structures are quite different—one in the blue and another in the red. The differences in the spectra of the models are small in aqueous solution, with all the absorption and emission spectra in the yellow–green region. The resonance‐based anionic keto form of oxyluciferin may be one origin of the red‐shifted luminescence but is not the exclusive explanation for the variation from green (≈530 nm) to red (≈635 nm). We study the geometries, absorption, and emission spectra of the possible protonated compounds of keto(?1) in the excited states. A new emitter keto(?1)′‐H is considered.  相似文献   

8.
Aequorea victoria is a type of jellyfish that is known by its famous protein, green fluorescent protein (GFP), which has been widely used as a probe in many fields. Aequorea has another important protein, aequorin, which is one of the members of the EF‐hand calcium‐binding protein family. Aequorin has been used for intracellular calcium measurements for three decades, but its bioluminescence mechanism remains largely unknown. One of the important reasons is the lack of clear and reliable knowledge about the light emitters, which are complex. Several neutral and anionic forms exist in chemiexcited, bioluminescent, and fluorescent states and are connected with the H‐bond network of the binding cavity in the protein. We first theoretically investigated aequorin chemiluminescence, bioluminescence, and fluorescence in real proteins by performing hybrid quantum mechanics and molecular mechanics methods combined with a molecular dynamics method. For the first time, this study reported the origin and clear differences in the chemiluminescence, bioluminescence and fluorescence of aequorin, which is important for understanding the bioluminescence not only of jellyfish, but also of many other marine organisms (that have the same coelenterazine caved in different coelenterazine‐type luciferases).  相似文献   

9.
The question whether the emitter of yellow‐green firefly bioluminescence is the enol or keto‐constrained form of oxyluciferin (OxyLH2) still has no definitive answer from experiment or theory. In this study, Arg220, His247, adenosine monophosphate (AMP), Water324, Phe249, Gly343, and Ser349, which make the dominant contributions to color tuning of the fluorescence, are selected to simulate the luciferase (Luc) environment and thus elucidate the origin of firefly bioluminescence. Their respective and compositive effects on OxyLH2 are considered and the electronic absorption and emission spectra are investigated with B3LYP, B3PW91, and PBE1KCIS methods. Comparing the respective effects in the gas and aqueous phases revealed that the emission transition is prohibited in the gas phase but allowed in the aqueous phase. For the compositive effects, the optimized geometry shows that OxyLH2 exists in the keto(?1) form when Arg220, His247, AMP, Water324, Phe249, Gly343, and Ser349 are all included in the model. Furthermore, the emission maximum wavelength of keto(?1)+Arg+His+AMP+H2O+Phe+Gly+Ser is close to the experimental value (560 nm). We conclude that the keto(?1) form of OxyLH2 is a possible emitter which can produce yellow‐green bioluminescence because of the compositive effects of Arg220, His247, AMP, Water324, Phe249, Gly343, and Ser349 in the luciferase environment. Moreover, AMP may be involved in enolization of the keto(?1) form of OxyLH2. Water324 is indispensable with respect to the environmental factors around luciferin (LH2).  相似文献   

10.
To date, blue dual fluorescence emission (DFE) has not been realized because of the limited choice of chemical moieties and severe geometric deformation of the DFE emitters leading to strong intramolecular charge transfer (ICT) with a large Stokes shift in excited states. Herein, an emitter (1′r,5′R,7′S)‐10‐(4‐(4,6‐diphenyl‐1,3,5‐triazin‐2‐yl)phenyl)‐10H‐spiro [acridine‐9,2′‐adamantane] (a‐DMAc‐TRZ) containing a novel adamantane‐substituted acridine donor is reported, which exhibits unusual blue DFE. The introduction of the rigid and bulky adamantane moiety not only suppressed the geometry relaxation in excited state, but also induced the formation of quasi‐axial conformer (QAC) and quasi‐equatorial conformer (QEC) geometries, leading to deep‐blue conventional fluorescence and sky‐blue thermally activated delayed fluorescence (TADF). The resulting organic light‐emitting diodes (OLEDs) achieved a maximum external quantum efficiency (EQE) of about 29 %, which is the highest reported for OLEDs based on dual‐conformation emitters.  相似文献   

11.
Efficient white light emitting polymers were synthesized based on poly(9,9-dioctylfluorene-co-dibenzothiophene-S,S-dioxide) as blue emitter and a bisphenylamine functionalized 2,1,3-benzothiadiazole (DPABT) as red emitter. It was found that the incorporation of hole-transporting carbazole moiety into polymer main chain could effectively reduce the hole injection barriers, which can lead to distinctly improved charge balance in the emissive layer. Additionally, the hole-transporting carbazole units may form efficient bipolar host with electron-transporting dibenzothiophene-S,S-dioxide units. The white light emitting diodes based on single polymer PFSOCzDPABT showed the maximum luminous efficiency of 3.3 cd/A with the maximum luminance of 10282 cd/m2 , and the luminous efficiency showed only 24% roll off at current density of 400 mA/cm2 . These Commission Internationale d’Enclairage (CIE) coordinates of the devices changed slightly with the driving voltages increasing from 8 V to 12 V, and were very close to National Television System Committee (NTSC) standard white light emission of (0.33, 0.33). The results indicated that the incorporating bipolar host and low band gap DPABT unit was a promising way to achieve efficient single white light emitting copolymers.  相似文献   

12.
Light is absorbed by photosynthetic algal symbionts (i.e. zooxanthellae) and by chromophoric fluorescent proteins (FP) in reef‐building coral tissue. We used a streak‐camera spectrograph equipped with a pulsed, blue laser diode (50 ps, 405 nm) to simultaneously resolve the fluorescence spectra and kinetics for both the FP and the zooxanthellae. Shallow water (<9 m)–dwelling Acropora spp. and Plesiastrea versipora specimens were collected from Okinawa, Japan, and Sydney, Australia, respectively. The main FP emitted light in the blue, blue‐green and green emission regions with each species exhibiting distinct color morphs and spectra. All corals showed rapidly decaying species and reciprocal rises in greener emission components indicating Förster resonance energy transfer (FRET) between FP populations. The energy transfer modes were around 250 ps, and the main decay modes of the acceptor FP were typically 1900–2800 ps. All zooxanthellae emitted similar spectra and kinetics with peak emission (~683 nm) mainly from photosystem II (PSII) chlorophyll (chl) a. Compared with the FP, the PSII emission exhibited similar rise times but much faster decay times, typically around 640–760 ps. The fluorescence kinetics and excitation versus emission mapping indicated that the FP emission played only a minor role, if any, in chl excitation. We thus suggest the FP could only indirectly act to absorb, screen and scatter light to protect PSII and underlying and surrounding animal tissue from excess visible and UV light. We conclude that our time‐resolved spectral analysis and simulation revealed new FP emission components that would not be easily resolved at steady state because of their relatively rapid decays due to efficient FRET. We believe the methods show promise for future studies of coral bleaching and for potentially identifying FP species for use as genetic markers and FRET partners, like the related green FP from Aequorea spp.  相似文献   

13.
Many species of fungi naturally produce light, a phenomenon known as bioluminescence, however, the fungal substrates used in the chemical reactions that produce light have not been reported. We identified the fungal compound luciferin 3‐hydroxyhispidin, which is biosynthesized by oxidation of the precursor hispidin, a known fungal and plant secondary metabolite. The fungal luciferin does not share structural similarity with the other eight known luciferins. Furthermore, it was shown that 3‐hydroxyhispidin leads to bioluminescence in extracts from four diverse genera of luminous fungi, thus suggesting a common biochemical mechanism for fungal bioluminescence.  相似文献   

14.
Conservation of energetically "expensive" metabolites is facilitated by enzymatic intra- and intermolecular channeling mechanisms. Our previous in vitro kinetic studies indicate that Vibrio harveyi reduced nicotinamide adenine dinucleotide phosphate-flavin mononucleotide (NADPH-FMN) oxidoreductase flavin reductase P (FRP) can transfer reduced riboflavin 5'-phosphate (FMNH2) to bacterial luciferase by direct channeling. However, no evidence has ever been reported for such an FMNH2 channeling between these two enzymes in vivo. The formation of a donor-acceptor enzyme complex, stable or transient, is mandatory for direct metabolite channeling between two enzymes regardless of details of the transfer mechanisms. In this study, we have obtained direct evidence of in vitro and in vivo FRP-luciferase complexes that are functionally active. The approach used is a variation of a technique previously described as Bioluminescence Resonance Energy Transfer. Yellow fluorescence protein (YFP) was fused to FRP to generate an active FRP-YFP fusion enzyme, which emits fluorescence peaking at 530 nm. In comparison with the normal 490 nm bioluminescence, an additional 530 nm component was observed in both the in vitro bioluminescence from the coupled reaction of luciferase and FRP-YFP and the in vivo bioluminescence from frp gene-negative V. harveyi cells that expressed FRP-YFP. This 530 nm bioluminescence component was not detected in a control in which a much higher level of YFP was present but not fused to FRP. Such findings indicate an energy transfer from the exited emitter of luciferase to the FRP component of the luciferase-FRP-YFP complex. Hence, the formation of an active complex of luciferase and FRP-YFP was detected both in vitro and in vivo.  相似文献   

15.
A new strategy to realize efficient white‐light emission from a binary fluorene‐based copolymer (PF‐Phq) with the fluorene segment as a blue emitter and the iridium complex, 9‐iridium(III)bis(2‐(2‐phenyl‐quinoline‐N,C3′)(11,13‐tetradecanedionate))‐3,6‐carbazole (Phq), as a red emitter has been proposed and demonstrated. The photo‐ and electroluminescence properties of the PF‐Phq copolymers were investigated. White‐light emission with two bands of blue and red was achieved from the binary copolymers. The efficiency increased with increasing concentration of iridium complex, which resulted from its efficient phosphorescence emission and the weak phosphorescent quenching due to its lower triplet energy level than that of polyfluorene. In comparison with the binary copolymer, the efficiency and color purity of the ternary copolymers (PF‐Phq‐BT) were improved by introducing fluorescent green benzothiadiazole (BT) unit into polyfluorene backbone. This was ascribed to the exciton confinement of the benzothiadiazole unit, which allowed efficient singlet energy transfer from fluorene segment to BT unit and avoided the triplet quenching resulted from the higher triplet energy levels of phosphorescent green emitters than that of polyfluorene. The phosphorescence quenching is a key factor in the design of white light‐emitting polyfluorene with triplet emitter. It is shown that using singlet green and triplet red emitters is an efficient approach to reduce and even avoid the phosphorescence quenching in the fluorene‐based copolymers. The strategy to incorporate singlet green emitter to polyfluorene backbone and to attach triplet red species to the side chain is promising for white polymer light‐emitting diodes. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 453–463, 2008  相似文献   

16.
Abstract—Bioluminescent bacteria may be isolated from sea water, and grown on a medium containing fish (or meat or yeast) extract. Cells harvested at the peak of luminescence can be lysed osmotically, releasing into the medium the soluble enzyme bacterial luciferase, which catalyzes the bioluminescent oxidation of reduced riboflavin 5′-phosphate and long chain aldehyde by molecular oxygen. Luciferase is the simplest possible heterpolymeric protein, with an α (catalytic, 42,000 daltons)-β (regulatory, 37,000 daltons) dimeric structure. Luciferase is not constitutive; it is induced by a substance produced by the bacteria themselves and excreted into the medium. Control also involves repression (glucose) and cyclic nucleotides. Recent work has resulted in the characterization of an intermediate in the light emitting reaction postulated to be luciferase-bound 4a-peroxy-dihydro FMN. The final steps in the in vitro light-emitting reaction involve reaction of this peroxy intermediate with aldehyde in a mixed function oxidase-type reaction, yielding an excited luciferase-flavin and long chain acid. The excited state is postulated to be the luciferase-bound 4a-hydroxy-dihydro-FMN. Although the identity of the in vivo aldehyde, its localization and its metabolism is unknown, studies with mutants which fail to synthesize aldehyde suggest that the 14 carbon fatty acid is a precursor. Moreover, although bacterial luciferase is highly soluble (200 mg ml-1 in aqueous solution) there is recent evidence from our laboratory and others that its function may involve the cytoplasmic membrane. The function of light emission is of particular interest since a considerable amount of energy is involved; assuming a quantum yield of 10%, the cell foregoes the production of about 60 ATP molecules per photon. A fully induced cell emits about 104 quanta/s and about 20% (!) of the oxygen consumption of the cell has been estimated to go via the light emitting pathway. One function is in light organs of higher organisms, where they occur as symbionts. The inducible (and repressible) nature of the luminescent system may be appreciated in terms of ecological options; the bacteria may be biologically very versatile. Induction by an inducer produced by the bacteria themselves would occur only under conditions where it accumulates, as in a luminous organ of a host. In the open ocean such an accumulation does not occur; the luminous system would thus not be synthesized and energy loss via luminescence is averted, allowing the bacteria to compete in an alternate “life style”.  相似文献   

17.
Unlike the enchanting yellow‐green flashes of light produced on warm summer evenings by Photinus pyralis, the most common firefly species in North America, the orange lights of Photinus scintillans are infrequently observed. These Photinus species, and likely all bioluminescent beetles, use the same substrates beetle luciferin, ATP and oxygen to produce light. It is the structure of the particular luciferase enzyme that is the key to determining the color of the emitted light. We report here the molecular cloning of the P. scintillans luc gene and the expression and characterization of the corresponding novel recombinant luciferase enzyme. A comparison of the amino acid sequence with that of the highly similar P. pyralis enzyme and subsequent mutagenesis studies revealed that the single conservative amino acid change tyrosine to phenylalanine at position 255 accounted for the entire emission color difference. Additional mutagenesis and crystallographic studies were performed on a H‐bond network, which includes the position 255 residue and five other stringently conserved beetle luciferase residues, that is proximal to the substrate/emitter binding site. The results are interpreted in the context of a speculative proposal that this network is key to the understanding of bioluminescence color determination.  相似文献   

18.
In the course of investigations on the possible involvement of the CIEEL (chemically initiated electron-exchange luminescence) mechanism in firefly bioluminescence, we have synthesized two novel firefly luciferin substrate analogues. D-Naphthylluciferin and D-quinolylluciferin were prepared by condensing D-cysteine with 2-cyano-6-hydroxynaphthalene and 2-cyano-6-hydroxyquinoline, respectively. These analogues are the first examples of bioluminescent substrates for firefly luciferase that do not contain a benzothiazole moiety. Firefly luciferase-catalyzed bioluminescence emission spectra revealed that compared to the normal yellow-green light of luciferin (lambda max = 559 nm), the emission from naphthylluciferin is significantly blue-shifted (lambda max = 524 nm); whereas quinolylluciferin emits orange-red light (lambda max = 608 nm). The fluorescence emission spectra, reaction pH optima, relative light yields, light emission kinetics and KM values of the analogues also were measured and compared to those of luciferin. Neither of the analogues produced the characteristic flash kinetics observed for the natural substrate. Instead, slower rise times to peak emission intensity were recorded. It appears that the formation of an intermediate from the analogue adenylates prior to the addition of oxygen is responsible for the slow rise times. The synthetic substrate analogues described here should be useful for future mechanistic studies.  相似文献   

19.
Individuals of aerobic, saprophytic bacterial species, encountering a changing environment in which they were regularly exposed to periods of severe hypoxia, would have gained a major selective advantage in fatty acid metabolism if a mutation in a flavoprotein oxygenase permitted them to oxidize accumulated C8-C18 aliphatic aldehydes to fatty acids at oxygen concentrations below which the cytochrome oxidase mediated electron transport pathway became inhibited. Such mutants, able to continue to metabolize exogenous lipid fatty acids under hypoxia, might have outproduced their wild type ancestors. Colonies of those mutants which utilized reduced flavin mononucleotide (FMNH2) as the flavin cofactor would have been luminous, owing to the fortuitous coincidence that the aldehyde oxygenation resulted in an enzyme-flavin excited electronic state which emitted blue light with a high fluorescence yield. If this accidental “proto-bioluminescence” were initially of sufficient brightness to have elicited phototactic responses in nearby motile organisms, increasing thereby detrital food sources or the potential for dispersal and colonization for the bacteria, a new and completely different selective advantage, that of bioluminescent signalling, would have arisen from the original metabolic function. This is the biochemical analog of Darwin's principle of functional change in structural continuity. It is proposed that bacterial luciferase, the FMNH2-oxygenase in luminous bacteria, was such a mutation. The present ubiquitous distributions of luminous bacterial species in marine waters, on the surfaces of marine animals and as symbionts in the specialized light organs and digestive tracts of many fish species have resulted from subsequent environmental selection and optimization for this original proto-bioluminescent reaction. By extension it is suggested whereas “protobioluminescence” arose in many species independently whenever metabolic oxygenation of a substrate resulted in an adventitiously efficient chemiluminescence, the function of bioluminescence arose only upon favorable interaction between the “proto-bioluminescence” and its ecosystem.  相似文献   

20.
We have synthesized a novel wide band gap polymer P36HCTPSi derived from 3,6‐carbazole and tetraphenylsilane by palladium‐catalyzed Suzuki coupling reaction. The resultant polymer shows a high glass transition temperature (217 °C) and good thermal stability. The conjugation length of P36HCTPSi is effectively confined because of the δ‐Si interrupted polymer backbone. The polymer exhibits a violet emission with a peak at 392 nm in solution, and the band gap estimated from the onset of its absorption is 3.26 eV. The high energy emission and wide band gap of P36HCTPSi make it appropriate host for green and blue emission phosphorescent materials. Efficient energy transfers from P36HCTPSi to both fac‐tris[2‐(2‐pyridyl‐kN)‐5‐methylphenyl]iridium(III) (green emission) and bis[(4,6‐difluorophenyl)pyridinato‐N,C2]‐(picolinato)iridium(III) (blue emission) were observed in photoluminescence (PL) spectra. Highly efficient phosphorescent polymer light‐emitting devices were realized by using P36HCTPSi as the host for iridium complexes, the maximum luminous efficiencies for green and blue devices were 27.6 and 3.4 cd/A, respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4784–4792, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号