首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Relative rate coefficients for the reactions of OH with 3‐methyl‐2‐cyclohexen‐1‐one and 3,5,5‐trimethyl‐2‐cyclohexen‐1‐one have been determined at 298 K and atmospheric pressure by the relative rate technique. OH radicals were generated by the photolysis of methyl nitrite in synthetic air mixtures containing ppm levels of nitric oxide together with the test and reference substrates. The concentrations of the test and reference substrates were followed by gas chromatography. Based on the value k(OH + cyclohexene) = (6.77 ± 1.35) × 10?11 cm3 molecule?1 s?1, rate coefficients for k(OH + 3‐methyl‐2‐cyclohexen‐1‐one) = (3.1 ± 1.0) × 10?11 and k(OH + 3,5,5‐trimethyl‐2‐cyclohexen‐1‐one) = (2.4 ± 0.7) × 10?11 cm3 molecule?1 s?1 were determined. To test the system we also measured k(OH + isoprene) = (1.11 ± 0.23) × 10?10 cm3 molecule?1 s?1, relative to the value k(OH + (E)‐2‐butene) = (6.4 ± 1.28) × 10?11 cm3 molecule?1 s?1. The results are discussed in terms of structure–activity relationships, and the reactivities of cyclic ketones formed in the photo‐oxidation of monoterpene are estimated. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 34: 7–11, 2002  相似文献   

2.
This study evaluated the effects of LLLT on the expression of inflammatory cytokines related to the development of oral mucositis by gingival fibroblasts. Primary gingival fibroblasts were seeded on 24‐well plates (105 cells/well) for 24 h. Fresh serum‐free culture medium (DMEM) was then added, and cells were placed in contact with LPS (Escherichia coli, 1 μg mL?1), followed by LLLT irradiation (LaserTABLE—InGaAsP diode prototype—780 nm, 25 mW) delivering 0, 0.5, 1.5 or 3 J cm?². Cells without contact with LPS were also irradiated with the same energy densities. Gene expression of TNF‐α, IL‐1β, IL‐6 and IL‐8 was evaluated by Real‐Time PCR, and protein synthesis of these cytokines was determined by enzyme‐linked immunosorbent (ELISA) assay. Data were statistically analyzed by the Kruskal–Wallis test, complemented by the Mann–Whitney test (< 0.05). LPS treatment increased the gene expression and protein synthesis of TNF‐α, IL‐6 and IL‐8, while the expression of IL‐1β was not affected. For LPS‐treated groups, LLLT promoted significant decreases in the expression of TNF‐α, IL‐6, and IL‐8 at 1.5 J cm?2 and 3 J cm?2. These results demonstrate that LLLT promoted a beneficial biomodulatory effect on the expression of inflammatory cytokines related to oral mucositis by human gingival fibroblasts.  相似文献   

3.
The possible regulation mechanism of red light was determined to discover how to retard UVA‐induced skin photoaging. Human skin fibroblasts were cultured and irradiated with different doses of UVA, thus creating a photoaging model. Fibroblasts were also exposed to a subtoxic dose of UVA combined with a red light‐emitting diode (LED) for five continuous days. Three groups were examined: control, UVA and UVA plus red light. Cumulative exposure doses of UVA were 25 J cm?2, and the total doses of red light were 0.18 J cm?2. Various indicators were measured before and after irradiation, including cell morphology, viability, β‐galactosidase staining, apoptosis, cycle phase, the length of telomeres and the protein levels of photoaging‐related genes. Red light irradiation retarded the cumulative low‐dose UVA irradiation‐induced skin photoaging, decreased the expression of senescence‐associated β‐galactosidase, upregulated SIRT1 expression, decreased matrix metalloproteinase MMP‐1 and the acetylation of p53 expression, reduced the horizon of cell apoptosis and enhanced cell viability. Furthermore, the telomeres in UVA‐treated cells were shortened compared to those of cells in the red light groups. These results suggest that red light plays a key role in the antiphotoaging of human skin fibroblasts by acting on different signaling transduction pathways.  相似文献   

4.
Deep tissue bioimaging with three‐photon (3P) excitation using near‐infrared (NIR) light in the second IR window (1.0–1.4 μm) could provide high resolution images with an improved signal‐to‐noise ratio. Herein, we report a photostable and nontoxic 3P excitable donor‐π‐acceptor system (GMP) having 3P cross‐section (σ3) of 1.78×10?80 cm6 s2 photon?2 and action cross‐section (σ3η3) of 2.31×10?81 cm6 s2 photon?2, which provides ratiometric fluorescence response with divalent zinc ions in aqueous conditions. The probe signals the Zn2+ binding at 530 and 600 nm, respectively, upon 1150 nm excitation with enhanced σ3 of 1.85×10?80 cm6 s2 photon?2 and σ3η3 of 3.33×10?81 cm6 s2 photon?2. The application of this probe is demonstrated for ratiometric 3P imaging of Zn2+ in vitro using HuH‐7 cell lines. Furthermore, the Zn2+ concentration in rat hippocampal slices was imaged at 1150 nm excitation after incubation with GMP, illustrating its potential as a 3P ratiometric probe for deep tissue Zn2+ ion imaging.  相似文献   

5.
Two new electron‐rich molecules based on 3,4‐phenylenedioxythiophene (PheDOT) were synthesized and successfully adopted as hole‐transporting materials (HTMs) in perovskite solar cells (PSCs). X‐ray diffraction, absorption spectra, photoluminescence spectra, electrochemical properties, thermal stabilities, hole mobilities, conductivities, and photovoltaic parameters of PSCs based on these two HTMs were compared with each other. By introducing methoxy substituents into the main skeleton, the energy levels of PheDOT‐core HTM were tuned to match with the perovskite, and its hole mobility was also improved (1.33×10?4 cm2 V?1 s?1, being higher than that of spiro‐OMeTAD, 2.34×10?5 cm2 V?1 s?1). The PSC based on MeO‐PheDOT as HTM exhibits a short‐circuit current density (Jsc) of 18.31 mA cm?2, an open‐circuit potential (Voc) of 0.914 V, and a fill factor (FF) of 0.636, yielding an encouraging power conversion efficiency (PCE) of 10.64 % under AM 1.5G illumination. These results give some insight into how the molecular structures of HTMs affect their performances and pave the way for developing high‐efficiency and low‐cost HTMs for PSCs.  相似文献   

6.
Protein separations in CZE suffer from nonspecific adsorption of analytes to the capillary surface. Semipermanent phospholipid bilayers have been used to minimize adsorption, but must be regenerated regularly to ensure reproducibility. We investigated the formation, characterization, and use of hybrid phospholipid bilayers (HPBs) as more stable biosurfactant capillary coatings for CZE protein separations. HPBs are formed by covalently modifying a support with a hydrophobic monolayer onto which a self‐assembled lipid monolayer is deposited. Monolayers prepared in capillaries using 3‐cyanopropyldimethylchlorosilane (CPDCS) or n‐octyldimethylchlorosilane (ODCS) yielded hydrophobic surfaces with lowered surface free energies of 6.0 ± 0.3 or 0.2 ± 0.1 mJ m?2, respectively, compared to 17 ± 1 mJ m?2 for bare silica capillaries. HPBs were formed by subsequently fusing vesicles comprised of 1,2‐dilauroyl‐sn‐glycero‐3‐phosphocholine or 1,2‐dioleoyl‐sn‐glycero‐3‐phosphocholine to CPDCS‐ or ODCS‐modified capillaries. The resultant HPB coatings shielded the capillary surface and yielded reduced electroosmotic mobility (1.3–1.9 × 10?4 cm2 V?1s?1) compared to CPDCS‐ and ODCS‐modified or bare capillaries (3.6 ± 0.2 × 10?4 cm2 V?1s?1, 4.8 ± 0.4 × 10?4 cm2 V?1s?1, and 6.0 ± 0.2 × 10?4 cm2 V?1s?1, respectively), with increased stability compared to phospholipid bilayer coatings. HPB‐coated capillaries yielded reproducible protein migration times (RSD ≤ 3.6%, n ≥ 6) with separation efficiencies as high as 200 000 plates/m.  相似文献   

7.
Melanopsin is a G protein‐coupled receptor with a peak sensitivity in the blue part of the spectrum, which plays a key role in nonvisual light‐mediated signaling. Recently, its importance in forming visual pathway as well as its role in blood vessels photorelaxation was also revealed. Melanopsin was discovered in 1998 in Xenopus leavis. Since then, the melanopsin presence was demonstrated across the species. The existence of two melanopsin genes (opn4m and opn4x) as well as melanopsin isoforms resulting from alternative splicing contributes to the variety in melanopsin‐regulated processes. In this review, the diversity in melanopsin‐induced signaling, regulation of melanopsin activity by phosphorylation and regulation of melanopsin mRNA are discussed.  相似文献   

8.
Poly{2,6‐bis(thiophene‐2‐yl)‐4,8‐bis(5‐dodecylthiophen‐2‐yl)benzo[1,2‐b :4,5‐b' ]dithiophene} [poly(Th‐bDTBDT‐Th)] was successfully synthesized through Stille coupling polymerization. The addition of the thiophene spacer groups between the benzodithiophene units resulted in improved performance in optoelectronic devices. This was attributed to the reduced lamellae stacking distance in thin film with prominent π–π stacking peak indicating close assembly of poly(Th‐bDTBDT‐Th). Spacing between the benzodithiophene units in poly(Th‐bDTBDT‐Th) helped the close packing of dodecyl chains and generated improved π stacking interaction. For poly(Th‐bDTBDT‐Th), the measured average field effect mobility was 2.32 × 10?3 cm2 V?1 s?1 and average hole mobility in vertical direction was 2.92 × 10?5 cm2 V?1 s?1. Charge transport in both directions was improved by one order of magnitude with the presence of the thiophene spacer. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3942–3948  相似文献   

9.
The rate constants of the gas‐phase reaction of OH radicals with trans‐2‐hexenal, trans‐2‐octenal, and trans‐2‐nonenal were determined at 298 ± 2 K and atmospheric pressure using the relative rate technique. Two reference compounds were selected for each rate constant determination. The relative rates of OH + trans‐2‐hexenal versus OH + 2‐methyl‐2‐butene and β‐pinene were 0.452 ± 0.054 and 0.530 ± 0.036, respectively. These results yielded an average rate constant for OH + trans‐2‐hexenal of (39.3 ± 1.7) × 10?12 cm3 molecule?1 s?1. The relative rates of OH+trans‐2‐octenal versus the OH reaction with butanal and β‐pinene were 1.65 ± 0.08 and 0.527 ± 0.032, yielding an average rate constant for OH + trans‐2‐octenal of (40.5 ± 2.5) × 10?12 cm3 molecule?1 s?1. The relative rates of OH+trans‐2‐nonenal versus OH+ butanal and OH + trans‐2‐hexenal were 1.77 ± 0.08 and 1.09 ± 0.06, resulting in an average rate constant for OH + trans‐2‐nonenal of (43.5 ± 3.0) × 10?12 cm3 molecule?1 s?1. In all cases, the errors represent 2σ (95% confidential level) and the calculated rate constants do not include the error associated with the rate constant of the OH reaction with the reference compounds. The rate constants for the hydroxyl radical reactions of a series of trans‐2‐aldehydes were compared with the values estimated using the structure activity relationship. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 483–489, 2009  相似文献   

10.
In this work, acrylamide/itaconic acid copolymeric hydrogels are prepared by free radical polymerization initiated by redox initiators of potassium persulfate and N ,N ,N ′,N ′‐tetramethyl ethylene diamine; N ,N ′methylene bisacrylamide was employed as a crosslinking agent. Aniline monomer was absorbed in the network of poly(acrylamide‐co‐itaconic acid) P(AAm‐co‐IA) hydrogel and followed by gamma radiation induced polymerization at room temperature. The novel semi‐interpenetrating network was comprised of linear polyaniline immersed in P(AAm‐co‐IA) matrix. Electrical conductivity of the hydrogels was measured using four‐probe technique. The conductivities for the prepared hydrogels are found to increase from 5.5 × 10?7 S cm?1 for P(AAm‐co‐IA) alone to 4.4 × 10?3 S cm?1 for semi‐interpenetrating polymer network P(AAm‐co‐IA)/polyaniline. Thus, a new composite hydrogel with good conductive properties also displaying enhanced mechanical strength and pH sensitivity was prepared. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
The kinetics of the reactions of propane, n‐pentane, and n‐heptane with OH radicals has been studied using a low‐pressure flow tube reactor (P = 1 Torr) coupled with a quadrupole mass spectrometer. The rate constants of the title reactions were determined under pseudo–first‐order conditions, monitoring the kinetics of OH radical consumption in excess of the alkanes. A newly developed high‐temperature flow reactor was validated by the study of the OH + propane reaction, where the reaction rate constant, k1 = 5.1 × 10?17T1.85exp(–160/T) cm3 molecule?1 s?1 (uncertainty of 20%), measured in a wide temperature range, 230–898 K, was found to be in excellent agreement with previous studies and current recommendations. The experimental data for the rate constants of the reactions of OH with n‐pentane and n‐heptane can be represented as three parameter expressions (in cm3 molecule?1 s?1, uncertainty of 20%): k2 = 5.8 × 10?18T2.2exp(260/T) at T= 248–900 K and k3 = 2.7 × 10?16T1.7exp(138/T) at T= 248–896 K, respectively. A combination of the present data with those from previous studies leads to the following expressions: k1 = 2.64 × 10?17T1.93exp(–114/T), k2 = 9.0 × 10?17T1.8 exp(120/T), and k3 = 3.75 × 10?16 T1.65 exp(101/T) cm3 molecule?1 s?1, which can be recommended for k1, k2, and k3 (with uncertainty of 20%) in the temperature ranges 190–1300, 240–1300, and 220–1300 K, respectively.  相似文献   

12.
The kinetics of the gas‐phase reactions of O3 with a series of selected terpenes has been investigated under flow‐tube conditions at a pressure of 100 mbar synthetic air at 295 ± 0.5 K. In the presence of a large excess of m‐xylene as an OH radical scavenger, rate coefficients k(O3+terpene) were obtained with a relative rate technique, (unit: cm3 molecule?1 s?1, errors represent 2σ): α‐pinene: (1.1 ± 0.2) × 10?16, 3Δ‐carene: (5.9 ± 1.0) × 10?17, limonene: (2.5 ± 0.3) × 10?16, myrcene: (4.8 ± 0.6) × 10?16, trans‐ocimene: (5.5 ± 0.8) × 10?16, terpinolene: (1.6 ± 0.4) × 10?15 and α‐terpinene: (1.5 ± 0.4) × 10?14. Absolute rate coefficients for the reaction of O3 with the used reference substances (2‐methyl‐2‐butene and 2,3‐dimethyl‐2‐butene) were measured in a stopped‐flow system at a pressure of 500 mbar synthetic air at 295 ± 2 K using FT‐IR spectroscopy, (unit: cm3 molecule?1 s?1, errors represent 2σ ): 2‐methyl‐2‐butene: (4.1 ± 0.5) × 10?16 and 2,3‐dimethyl‐2‐butene: (1.0 ± 0.2) × 10?15. In addition, OH radical yields were found to be 0.47 ± 0.04 for 2‐methyl‐2‐butene and 0.77 ± 0.04 for 2,3‐dimethyl‐2‐butene. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 394–403, 2002  相似文献   

13.
Prussian blue nanoparticles (PBNPs) were prepared by a self‐assembly process on a glassy carbon electrode (GCE) modified with poly(o‐phenylenediamine) (PoPD) film. The stepwise fabrication process of PBNP‐modified PoPD/GCE was characterized using scanning electron microscopy and electrochemical impedance spectroscopy. The prepared PBNPs showed an average size of 70 nm and a homogeneous distribution on the surface of the modified electrode. The PBNPs/PoPD/GCE showed electrocatalytic activity towards the oxidation of pyridoxine (PN) and was used as an amperometric sensor. The modified electrode exhibited a linear response for PN oxidation over the concentration range 3–38.5 μM with a detection limit of ca 6.10 × 10?7 M (S/N = 3) and sensitivity of 2.79936 × 103 mA M?1 cm?2 using an amperometric method. The mechanism and kinetics of the catalytic oxidation reaction of PN were investigated using cyclic voltammetry and chronoamperometry. The values of α, kcat and D were estimated as 0.36, 1.089 × 102 M?1 s?1 and 8.9 × 10?5 cm2 s?1, respectively. This sensor also exhibited good anti‐interference and selectivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Two well‐defined alternating π‐conjugated polymers containing a soluble electroactive benzo[1,2‐b:4,5‐b′]difuran (BDF) chromophore, poly(BDF‐(9‐phenylcarbazole)) (PBDFC), and poly(BDF‐benzothiadiazole) (PBDFBTD) were synthesized via Sonogashira copolymerizations. Their optical, electrochemical, and field‐effect charge transport properties were characterized and compared with those of the corresponding homopolymer PBDF and random copolymers of the same overall composition. All these polymers cover broad optical absorption ranges from 250 to 750 nm with narrow optical band gaps of 1.78–2.35 eV. Both PBDF and PBDFBTD show ambipolar redox properties with HOMO levels of ?5.38 and ?5.09 eV, respectively. The field‐effect mobility of holes varies from 2.9 × 10?8 cm2 V?1 s?1 in PBDF to 1.0 × 10?5 cm2 V?1 s?1 in PBDFBTD. Bulk heterojunction solar cell devices were fabricated using the polymers as the electron donor and [6,6]‐phenyl‐C61‐butyric acid methyl ester as the electron acceptor, leading to power conversion efficiencies of 0.24–0.57% under air mass 1.5 illumination (100 mW cm?2). These results indicate that their band gaps, molecular electronic energy levels, charge mobilities, and molecular weights are readily tuned by copolymerizing the BDF core with different π‐conjugated units. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
Organic field‐effect transistors incorporating planar π‐conjugated metal‐free macrocycles and their metal derivatives are fabricated by vacuum deposition. The crystal structures of [H2(OX)] (H2OX=etioporphyrin‐I), [Cu(OX)], [Pt(OX)], and [Pt(TBP)] (H2TBP=tetra‐(n‐butyl)porphyrin) as determined by single crystal X‐ray diffraction (XRD), reveal the absence of occluded solvent molecules. The field‐effect transistors (FETs) made from thin films of all these metal‐free macrocycles and their metal derivatives show a p‐type semiconductor behavior with a charge mobility (μ) ranging from 10?6 to 10?1 cm2 V?1 s?1. Annealing the as‐deposited Pt(OX) film leads to the formation of a polycrystalline film that exhibits excellent overall charge transport properties with a charge mobility of up to 3.2×10?1 cm2 V?1 s?1, which is the best value reported for a metalloporphyrin. Compared with their metal derivatives, the field‐effect transistors made from thin films of metal‐free macrocycles (except tetra‐(n‐propyl)porphycene) have significantly lower μ values (3.0×10?6–3.7×10?5 cm2 V?1 s?1).  相似文献   

16.
This research studied the effectiveness of the photoactive compound methylene blue (MB) activated with red LED light (576–672 nm) compared to that of caspofungin (CAS) on 1 Candida albicans and 3 Candida parapsilosis strains. Results were evaluated in terms of SMIC50 for CAS or in PDI (photodynamic inactivation)‐SMIC50 for MB (minimal inhibitory concentration inhibiting sessile biofilm to 50% in comparison to the control without CAS or after irradiation in comparison to the control without MB). While all strains were susceptible to CAS in planktonic form, the SMIC50 was determined to be >16 μg mL?1 when CAS was added to a 24 h biofilm. However, PDI‐MIC50s (1.67 mW cm?2, fluence 15 J cm?2) were 0.0075–0.03 mmol L?1. For biofilm, PDI‐SMIC50s were in the range from 0.7 to 1.35 mmol L?1. MB concentration of 1 mmol L?1 prevented a biofilm being formed ex vivo on mouse tongues after irradiation regardless of the application time, in contrast to CAS, which was only effective at a concentration of 16 μg mL?1 when it was added at the beginning of biofilm formation. PDI seems to be a promising method for the prevention of microbial biofilms that do not respond significantly to conventional drugs.  相似文献   

17.
ipso‐Arylative ring‐opening polymerization of 2‐bromo‐8‐aryl‐8H‐indeno[2,1‐b]thiophen‐8‐ol monomers proceeds to Mn up to 9 kg mol?1 with conversion of the monomer diarylcarbinol groups to pendent conjugated aroylphenyl side chains (2‐benzoylphenyl or 2‐(4‐hexylbenzoyl)phenyl), which influence the optical and electronic properties of the resulting polythiophenes. Poly(3‐(2‐(4‐hexylbenzoyl)phenyl)thiophene) was found to have lower frontier orbital energy levels (HOMO/LUMO=?5.9/?4.0 eV) than poly(3‐hexylthiophene) owing to the electron‐withdrawing ability of the aryl ketone side chains. The electron mobility (ca. 2×10?3 cm2 V?1 s?1) for poly(3‐(2‐(4‐hexylbenzoyl)phenyl)thiophene) was found to be significantly higher than the hole mobility (ca. 8×10?6 cm2 V?1 s?1), which suggests such polymers are candidates for n‐type organic semiconductors. Density functional theory calculations suggest that backbone distortion resulting from side‐chain steric interactions could be a key factor influencing charge mobilities.  相似文献   

18.
Two furan‐flanked polymers poly{3,6‐difuran‐2‐yl‐2,5‐di(2‐octyldodecyl)‐pyrrolo[3,4‐c]pyrrole‐1,4‐dione‐alt‐thienylenevinylene} (PDVFs), with a highly π‐extended diketopyrrolopyrrole backbone, are developed for solution‐processed high‐performance polymer field‐effect transistors (FETs). Atomic force microscopy and grazing incidence X‐ray scattering analyses indicate that PDVF‐8 and PDVF‐10 films exhibit a similar nodular morphology with the ultrasmall lamellar distances of 16.84 and 18.98 Å, respectively. When compared with the reported polymers with the same alkyl substitutes, this is the smallest d‐spacing value observed to date. This closed lamellar crystallinity facilitates charge carrier transport. Therefore, polymer thin‐film transistors fabricated from as‐spun PDVF‐8 films exhibit a high hole mobility exceeding 1.0 cm2 V?1 s?1 with a current on/off ratio above 106. After annealing treatment at 100 °C in air, the highest hole mobility of PDVF‐8‐based FETs was significantly improved to 1.90 cm2 V?1 s?1, which is among the highest values of the reported FET devices fabricated from polymer thin films based on this mild annealing temperature. In contrast, long alkyl‐substituted PDVF‐10 exhibited a relatively low hole mobility of 1.65 cm2 V?1 s?1 mainly resulting from low molecular weight. This work demonstrated that PDVFs would be promising semiconductors for developing cost‐effective and large‐scale production of flexible organic electronics. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1970–1977  相似文献   

19.
A new electrochemical method was proposed for the determination of adenosine‐5′‐triphosphate (ATP) based on the electrooxidation at a molecular wire (MW) modified carbon paste electrode (CPE), which was fabricated with diphenylacetylene (DPA) as the binder. A single well‐defined irreversible oxidation peak of ATP appeared on MW‐CPE with adsorption‐controlled process and enhanced electrochemical response in a pH 3.0 Britton‐Robinson buffer solution, which was due to the presence of high conductive DPA in the electrode. The electrochemical parameters of ATP were calculated with the electron transfer coefficient (α) as 0.54, the electron transfer number (n) as 1.9, the apparent heterogeneous electron transfer rate constant (ks) as 2.67 × 10?5 s?1 and the surface coverage (ΓT) as 4.15 × 10?10 mol cm?2. Under the selected conditions the oxidation peak current was proportional to ATP concentration in the range from 1.0 × 10?7 mol L?1 to 2.0 × 10?3 mol L?1 with the detection limit as 1.28 × 10?8 mol L?1 (3σ) by sensitive differential pulse voltammetry. The proposed method showed good selectivity without the interferences of coexisting substances and was successful applied to the ATP injection samples detection.  相似文献   

20.
We present a study of electrical and optical properties of nitrogen‐doped tin oxide thin films deposited on glass by the DC Magnetron Sputtering method. The deposition conditions to obtain p‐type thin films were a relative partial pressure between 7% and 11% (N2 and/or O2), a total working pressure of 1.8 mTorr and a plasma power of 30 W. The deposited thin films were oxidized after annealing at 250°C for 30 minutes. X‐ray diffraction results showed that the as‐deposited thin films exhibit a Sn tetragonal structure, and after annealing, they showed SnO tetragonal structure. X‐ray photoelectron spectroscopy results showed the presence of nitrogen in the samples before and after annealing. The measured physical parameters of the thin films were optical band gap between 1.92 and 2.68 eV, resistivity between 0.52 and 5.46 Ωcm, a concentration of p‐type carriers between 1018 and 1019 cm?3, and a Hall mobility between 0.1 and 1.94 cm2V?1s?1. These thin films were used to fabricate p‐type thin film transistors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号