首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A rational synthetic procedure for the preparation of a series of pyrene‐based neutral and dicationic bis‐azole compounds is reported. The method allows the tailored design of pyrene‐based azoles with different substituents at the nitrogen atoms of the heterocycles, for which the relative conformation of the resulting bis‐azoles can be easily controlled. The bis‐azoliums were used for the preparation of the related diplatinum complexes by reaction with [{Pt(ppy)(μ‐Cl)2}2] (ppy=2‐phenylpyridinate). The X‐ray molecular structure of one of the resulting compounds, a diplatinum(II) bis(N‐heterocyclic carbene) complex, is described. Studies on the photophysical properties of all new species are described. The emission of the bis‐azole‐based compounds seems to be independent of their substitution patterns, which basically indicates that physical properties such as solubility, melting point, and viscosity can be fine‐tuned while maintaining the luminescence properties. Finally, the energies associated with the HOMO and LUMO levels suggest that this family provides versatility to match the energy levels of a wide range of host materials, which is important for the preparation of organic light‐emitting devices.  相似文献   

2.
Betapyrrole‐substituted porphyrin dyads connected by ethynyl linkage to N‐butylcarbazole or triphenylamine donors are reported. Donor‐π‐acceptor type betasubstituted porphyrin dyads and their Zn(II) and Pd(II) complexes were characterized by MALDI‐MS, NMR, UV‐vis absorption, fluorescence and cyclic voltammetry techniques. The S1 emission dynamics were analyzed by time‐resolved spectroscopy (TCSPC); dyads exhibited efficient energy transfer up to 93% from beta‐donors (N‐butylcarbazole or triphenylamine group) to the porphyrin core. The efficiency of energy transfer for the beta‐substituted porphyrin dyads were much higher than those of the corresponding meso‐substituted porphyrin dyads, reflecting enhanced communications between the beta‐donors and the porphyrin core. The Pd(II) dyads, showed characteristic phosphorescence in the near IR region and very efficient singlet oxygen quantum yields (53–60%); these dyads are promising candidates for photocatalytic oxidations of organic compounds. The donor‐acceptor interaction between the porphyrin core and the beta‐donors was supported by the DFT studies in the porphyrin dyads.  相似文献   

3.
Salts containing bis‐phosphonio‐benzophospholide cations 2 a – d with an additional donor site in one of the phosphonio‐moieties were synthesized either via quaternisation of the Ph2P moiety in the neutral phosphonio‐benzophospholide 3 , or via ring‐closure of the functionalized bis‐phosphonium ion 6 . The Ph2P‐substituted cation 2 d formed chelate complexes [M(k2P,P′‐ 2 d )(CO)n]+ with M(CO)n = Ni(CO)2, Fe(CO)3, Cr(CO)4. In the latter case, competition between formation of the chelate and a complex [Cr(kP‐ 2 d )2(CO)4]2+ was observed, and interpreted as a consequence of antagonism between the stabilizing chelate effect and destabilizing ligand–ligand repulsions. The formation of stable PdII and PtII complexes of 2 d suggests that the chelate effect may also overcome the kinetic inhibition which so far prevented isolation of complexes of these metals with bis‐phosphonio‐benzophospholides. The newly synthesized ligands and complexes were characterized by spectroscopic data, and an X‐ray crystal structure analysis of 2 a [Br]. The reactivity of chelate complexes towards Ph3P indicates that the ring phosphorus atom is a weaker donor than the pendant Ph2P‐group.  相似文献   

4.
The synthesis and the characterization of two porphyrin coordination cages are reported. The design of the cage formation is based on the coordination of silver(I) ions to the pyridyl units of 3‐pyridyl appended porphyrins. 1H/109Ag NMR spectroscopy, and diffusion‐ordered spectroscopy (DOSY) experiments demonstrate that both the free base porphyrin 2H‐TPyP and the Zn‐porphyrin Zn‐TPyP form the closed cages, [ Ag4(2H‐TPyP)2 ]4+ and [ Ag4(Zn‐TPyP)2 ]4+, respectively, upon addition of two equivalents of Ag+. The complexation processes are characterized in details by means of absorption and emission spectroscopy in diluted CH2Cl2 solutions. The data are discussed in the frame of the point‐dipole exciton coupling theory; the two porphyrin monomers, in fact, experience a rigid face‐to‐face geometry in the cages and a weak inter‐porphyrin exciton coupling. An intermediate species is observed, for Zn‐TPyP , in a porphyrin/Ag+ stoichiometric ratio of about 1:0.5 and is tentatively ascribed to an oblique open form. The occurrence of a photoinduced electron‐transfer reaction within the cages is excluded on the basis of the experimental outcomes and thermodynamic evaluations. Photophysical experiments evidence different reactivities of singlet and triplet excited states in the assemblies. A lower fluorescence quantum yield and triplet formation is discussed in relation to the constrained geometry of the complexes. Unusually long triplet excited state lifetimes are measured for the assemblies.  相似文献   

5.
Azobenzene‐bridged β‐to‐β and meso‐to‐meso porphyrin nanorings were successfully synthesized by a palladium‐catalyzed Suzuki–Miyaura coupling reaction in a logical synthesis. The dimeric structure was confirmed by XRD analysis. The azo linkages in di‐ and tetramers are in the alltrans conformation, whereas in the trimers one azo linkage can be interconverted between cis and trans under external stimulation. When trimeric isomers are heated to 333 K or higher, the azo linkages will be in the alltrans configurations: the pure alltrans trimer can be kept in the dark for several months. Fluorescence anisotropy and pump‐power‐dependent decay results revealed excitation energy transfer for azobenzene‐bridged zinc–porphyrin nanorings. The distances between porphyrin units of these azobenzene‐bridged porphyrin arrays are almost the same, but the exciton energy hopping (EEH) times for each wheel are markedly different. The dimer and meso‐to‐meso tetramer possess relatively short excitation energy transfer (EET) times (1.28 and 2.48 ps, respectively) due to their good planarity and rigidity. In contrast, the EET time for the trimeric zinc(II)–porphyrin array (6.9 ps) is relatively long due to its nonradiative decay pathway (i.e., cis/trans isomerization of azobenzene). Both di‐ and tetramers exhibit relatively high fluorescence quantum yields, whereas the trimers show weak emission because of structural differences.  相似文献   

6.
The synthesis of a zinc(II) porphyrin 1 with four appended triazolyl–pyridine chelates is reported. Complexation of the porphyrin peripheral ligands with AgI ions in a 1:2 binding stoichiometry afforded quantitatively the coordination cage [Ag4( 1 )2]4+. The assembly and disassembly processes of the cage were investigated in solution using UV/Vis spectroscopy. The mathematical analysis of the data obtained in the UV/Vis titration of 1 with AgI confirmed the assembly in CH2Cl2/MeOH (90:10) solution of a species having a 1:2 porphyrin/silver stoichiometry and assigned to it an overall stability constant of 5.0×1026 M ?5. The use of a model system allowed an independent assessment of a microscopic binding constant value (Km) for the interaction between the triazolyl‐pyridine ligand and AgI. The coincidence that existed between the Km values extracted from the model system and the titration of 1 provided an indication of the quality and fit of the data analysis. It also allowed the calculation of the average effective molarity (EM) value for the three intramolecular processes that led to the cage assembly as 2.6 mM . Simulated speciation profiles supported the conclusion that at millimolar concentration and working under strict stoichiometric control of the silver/porphyrin ratio, the cage [Ag4( 1 )2]4+ was the species exclusively assembled in solution. On the other hand, when the concentration of added AgI was approximately 2.6 mM , 50 % of the coordination cage disassembled into open aggregates.  相似文献   

7.
Flexible director : A flexible multidentate linker containing picolinate chromophores directs the selective formation of luminescent 1D lanthanide‐based polymers. Partial protonation significantly decreases the preorganization of the linker, thus leading to supramolecular 1D and 2D isomers (see scheme). The lanthanide‐containing 1D polymers undergo reversible structural modification in the hydration/dehydration process, which is also associated with significant differences in the luminescence emission.

  相似文献   


8.
A series of neutral Ir(III)‐based heteroleptic complexes with a formula of [Ir(η2‐(CN))22‐(SS))] ((CN) = ppy, (SS) = Et2NCS2 ( 2a ), MeOCS2 ( 2b ), EtOCS2 ( 2c ), iPrOCS2 ( 2d ); (CN) = tpy, (SS) = Et2NCS2 ( 3a ), MeOCS2 ( 3b ), EtOCS2 ( 3c ), iPrOCS2 ( 3d ); (CN) = epb , (SS) = Et2NCS2 ( 4a ), MeOCS2 ( 4a ), EtOCS2 ( 4a ); ppyH = 2‐phenylpyridine; tpyH = 2‐(4′‐tolyl)pyridine; epbH = ethyl 4‐(2′‐pyridyl)benzate) was synthesized and characterized. The crystal structure of complex 2d was also determined. The electron‐releasing substituents on (CN) or (SS) blueshift λmax values.  相似文献   

9.
A new lanthanide porphyrin, [Sm III(H3TPPSIII)]n·n H2O(1, H6 TPPS = tetra(4-sulfonatophenyl)porphyrin), has been synthesized through a hydrothermal reaction and structurally characterized by single-crystal X-ray diffraction. Compound 1 crystallizes in the P4/mcc space group of tetragonal system: a = 15.3683(12), c = 9.895(2) A, V = 2337.0(5) A3, C44H29N4O13S4 Sm, Mr =1100.30, Z = 2, Dc = 1.564 g/cm3, S = 1.063, μ(Mo Kα) = 1.502 mm–1, F(000) = 1102, R = 0.0583 and w R = 0.1666. Compound 1 is characteristic of a three-dimensional(3-D) framework with a slightly distorted square-antiprism eight-coordinated Sm3+ ion. Fluorescent study revealed that compound 1exhibits an emission in the red region. The fluorescence quantum yield and lifetime of 1 were determined to be 3.5% and 9.1 ns, respectively. UV-vis absorption spectra were also investigated.  相似文献   

10.
Double‐wall carbon nanotubes (DWCNTs) with pyridyl units covalently attached to the external wall through isoxazolino linkers and carboxylic groups that have been esterified by pentyl chains are synthesized. The properties of these modified DWCNTs are then compared with an analogous sample based on single‐wall carbon nanotubes (SWCNTs). Raman spectroscopy shows the presence of characteristic radial breathing mode vibrations, confirming that the samples partly retain the integrity of the nanotubes in the case of DWCNTs, including the internal and external nanotubes. Quantification of the pyridyl content for both samples (DWCNT and SWCNT derivatives) is based on X‐ray photoelectron spectroscopy and thermogravimetric profiles, showing very similar substituent load. Both pyridyl‐containing nanotubes (DWCNTs and SWCNTs) form a complex with zinc porphyrin (ZnP), as evidenced by the presence of two isosbestic points in the absorption spectra of the porphyrin upon addition of the pyridyl‐functionalized nanotubes. Supramolecular complexes based on pyridyl‐substituted DWCNTs and SWCNTs quench the emission and the triplet excited state identically, through an energy‐transfer mechanism based on pre‐assembly of the ground state. Thus, the presence of the intact inner wall in DWCNTs does not influence the quenching behavior, with respect to SWCNTs, for energy‐transfer quenching with excited ZnP. These results sharply contrast with previous ones referring to electron‐transfer quenching, in which the double‐wall morphology of the nanotubes has been shown to considerably reduce the lifetime of charge separation, owing to faster electron mobility in DWCNTs compared to SWCNTs.  相似文献   

11.
A new class of ferroelectric coordination‐based polymers has been developed by the self‐assembly of lipophilic zinc porphyrin ( ZnP ) and ditopic bridging ligands. The ligands contain dipolar benzothiadiazole or fluorobenzene units, which are axially coordinated to ZnP with the dipole moments oriented perpendicular to the coordination axes. The coordination‐based polymers show ferroelectric characteristics in the liquid crystalline state, as revealed by distinctive hysteresis in the polarization–electric field (PE) loops and inversion current peaks in current–voltage (IV) loops. The observed ferroelectric properties are explainable by flip–flop rotation of the dipolar axle ligands induced by the applied electric field, as demonstrated by the positive‐up–negative‐down (PUND) measurements. The present system provides a new operating principle in supramolecular ferroelectrics.  相似文献   

12.
Phenanthroline‐based hexadentate ligands L1 and L2 bearing two achiral semicarbazone or two chiral imine moieties as well as the respective mononuclear complexes incorporating various lanthanide ions, such as LaIII, EuIII, TbIII, LuIII, and YIII metal ions, were synthesized, and the crystal structures of [ML1Cl3] (M=LaIII, EuIII, TbIII, LuIII, or YIII) complexes were determined. Solvent or water molecules act as coligands for the rare‐earth metals in addition to halide anions. The big LnIII ion exhibits a coordination number (CN) of 10, whereas the corresponding EuIII, TbIII, LuIII, and YIII centers with smaller ionic radii show CN=9. Complexes of L2, namely [ML2Cl3] (M=EuIII, TbIII, LuIII, or YIII) ions could also be prepared. Only the complex of EuIII showed red luminescence, whereas all the others were nonluminescent. The emission properties of the Eu derivative can be applied as a photophysical signal for sensing various anions. The addition of phosphate anions leads to a unique change in the luminescence behavior. As a case study, the quenching behavior of adenosine‐5′‐triphosphate (ATP) was investigated at physiological pH value in an aqueous solvent. A specificity of the sensor for ATP relative to adenosine‐5′‐diphosphate (ADP) and adenosine‐5′‐monophosphate (AMP) was found. 31P NMR spectroscopic studies revealed the formation of a [EuL2(ATP)] coordination species.  相似文献   

13.
Synthesis, photophysical and metal ion recognition properties of a series of amino acid‐linked free‐base and Zn‐porphyrin derivatives (5–9) are reported. These porphyrin derivatives showed favorable photophysical properties including high molar extinction coefficients (>1 × 105 m ?1 cm?1 for the Soret band), quantum yields of triplet excited states (63–94%) and singlet oxygen generation efficiencies (59–91%). Particularly, the Zn‐porphyrin derivatives, 6 and 9 showed higher molar extinction coefficients, decreased fluorescence quantum yields, and higher triplet and singlet oxygen quantum yields compared to the corresponding free‐base porphyrin derivatives. Further, the study of their interactions with various metal ions indicated that the proline‐conjugated Zn‐porphyrins (6 and 9) showed high selectivity toward Cu2+ ions and signaled the recognition through changes in fluorescence intensity. Our results provide insights on the role of nature of amino acid and metallation in the design of the porphyrin systems for application as probes and sensitizers.  相似文献   

14.
Novel conjugated, pyridyl‐functionalised triazaphospholes with either tBu or SiMe3 substituents at the 5‐position of the N3PC heterocycle have been prepared by a [3+2] cycloaddition reaction and compared with structurally related, triazole‐based systems. Photoexcitation of the 2‐pyridyl‐substituted triazaphosphole gives rise to a significant fluorescence emission with a quantum yield of up to 12 %. In contrast, the all‐nitrogen triazole analogue shows no emission at all. DFT calculations indicate that the 2‐pyridyl substituted systems have a more rigid and planar structure than their 3‐ and 4‐pyridyl isomers. Time‐dependent (TD) DFT calculations show that only the 2‐pyridyl‐substituted triazaphosphole exhibits similar planar geometry, with matching conformational arrangements in the lowest energy excited state and the ground state; this helps to explain the enhanced emission intensity. The chelating P,N‐hybrid ligand forms a ReI complex of the type [(N^N)Re(CO)3Br] through the coordination of nitrogen atom N2 to the metal centre rather than through the phosphorus donor. Both structural and spectroscopic data indicate substantial π‐accepting character of the triazaphosphole, which is again in contrast to that of the all‐nitrogen‐containing triazoles. The synthesis and photophysical properties of a new class of phosphorus‐containing extended π systems are described.  相似文献   

15.
Six novel disubstituted phenylene‐linked bis‐imidazole derivatives, 3a – 3f , were prepared by a one‐pot, microwave‐assisted method under solvent‐free conditions, in yields ranging from 61.6 to 85.6%. The new compounds were characterized by 1H‐ and 13C‐NMR, UV/VIS, and fluorescence spectroscopy, and mass spectrometry, as well as by elemental analyses. The influence of substituents and solvents on the optical properties of 3a – 3f was investigated. It was found that there is little influence on absorption and excitation spectra in contrast to emission spectra. Compounds 3a – 3f exhibit strong fluorescence in solution, their fluorescence quantum yields ranging from 0.27 to 0.96.  相似文献   

16.
Bis‐thiourea derivatives have distinguished synthetic potentialities. They are interesting substrates for construction of various classes of heterocycles, such as thiazoles, thiadiazoles, imidazoles, bis‐thiazoles, bis‐thiadiazoles, and fused heterocyclic systems. The current review is concerned on disclosing the synthetic and research applications of bis‐thioureas that were reported in the literature during the last decade.  相似文献   

17.
The preparation of exquisite hierarchical worm‐like Co1?xS (x=0.75) microtubes by a one‐pot complex–surfactant‐assisted hydrothermal method is successfully achieved for the first time. The hierarchical structures of the microtube wall are assembled from numerous interleaving hexagonal nanoplates. X‐ray diffraction, X‐ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and high‐resolution transmission electron microscopy were used to characterize the samples. The experimental results indicate that the “soft template” surfactant cetyltrimethylammonium bromide and the chelating ethylenediamine both play important roles for the formation of hierarchical Co1?xS microtubes. A possible formation mechanism for the growth processes is proposed. Additionally, the electrochemical and magnetic properties of Co1?xS microtubes were systematically studied.  相似文献   

18.
A series of doubly β‐to‐β bridged cyclic ZnII porphyrin arrays were prepared by a stepwise Suzuki–Miyaura coupling reaction of borylated ZnII porphyrin with different bridge groups. The coupling of the building block of β,β′‐diboryl ZnII porphyrin 1 with different bridges provided the doubly β‐to‐β carbazole‐bridged ZnII porphyrin array 3 , the fluorene‐bridged ZnII porphyrin array 5 , the fluorenone‐bridged ZnII porphyrin array 7 , and the three‐carbazole‐bridged ZnII porphyrin ring 8 . The structural assignment of 3 was confirmed by the X‐ray diffraction analysis, which revealed a highly symmetrical and remarkably bent syn‐form structure. The incorporation of bridge units with different electronic effects results in different photophysical properties of the cyclic ZnII porphyrin arrays. Comprehensive photophysical studies demonstrate that the electron‐withdrawing bridge fluorenone has the largest electronic interaction with the ZnII porphyrin unit among the series, thus resulting in the highest two‐photon absorption cross‐section values (σ(2)) of 6570±60 GM for 7 . The present work provides a new strategy for developing porphyrin‐based optical materials.  相似文献   

19.
The synthesis and photophysical properties of two novel multichromophoric compounds is presented. Their molecular design comprises a carbonyl‐bridged triarylamine core and either naphthalimides or 4‐(5‐hexyl‐2,2′‐bithiophene)naphthalimides as second chromophore in the periphery. The lateral chromophores are attached to the core via an amide linkage and a short alkyl spacer. The synthetic approach demonstrates a straightforward functionalization strategy for carbonyl‐bridged triarylamines. Steady‐state and time‐resolved spectroscopic investigations of these compounds, in combination with three reference compounds, provide clear evidence for energy transfer in both multichromophoric compounds. The direction of the energy transfer depends on the lateral chromophore used. Furthermore, the compound bearing the lateral 4‐(bithiophene)naphthaimides is capable of forming fluorescent gels at very low concentrations in the sub‐millimolar regime whilst retaining its energy transfer properties.  相似文献   

20.
在溶剂热反应条件下, 用预先合成的乳酸衍生物(R)-H2CBA和(S)-H2CBA分别与含氮辅助配体(E)-1,2-二(4-吡啶基)乙烯(DPEE)和1,4-二(1H-咪唑-1-基)苯(1,4-DIB)组合, 制备出2对不同结构的单一手性配位聚合物[Cd2((R)-CBA)2(DPEE)(H2O)2]n(1-D), [Cd2((S)- CBA)2(DPEE)(H2O)2]n(1-L), [Cd((R)-CBA)(1,4-DIB)]·H2O(2-D)和[Cd((S)-CBA)(1,4-DIB)]·H2O(2-L). 其中1-D和1-L是由梯形Cd-CBA链和DPEE配体连接成的二维框架结构; 而2-D和2-L是三维超分子框架结构, 包含3种不同类型的对映手性螺旋链. 对上述化合物进行了粉末X射线衍射、 热重分析和圆二色谱分析, 并对其荧光性质进行了讨论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号