首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The turbulent fluid and particle interaction in the turbulent boundary layer for cross flow over a cylinder has been experimentally studied. A phase-Doppler anemometer was used to measure the mean and fluctuating velocities of both phases. Two size ranges of particles (30μm–60μm and 80μm–150μm) at certain concentrations were used for considering the effects of particle sizes on the mean velocity profiles and on the turbulent intensity levels. The measurements clearly demonstrated that the larger particles damped fluid turbulence. For the smaller particles, this damping effect was less noticeable. The measurements further showed a delay in the separation point for two phase turbulent cross flow over a cylinder. The project supported by the National Natural Science Foundation of China  相似文献   

2.
The streamwise velocity components at different vertical heights in wall turbulence were measured. Wavelet transform was used to study the turbulent energy spectra, indicating that the global spectrum results from the weighted average of Fourier spectrum based on wavelet scales. W'avelet transform with more vanishing moments can express the declining of turbulent spectrum. The local wavelet spectrum shows that the physical phenomena such as deformation position in the boundary layer, and the or breakup of eddies are related to the vertical energy-containing eddies exist in a multi-scale form. Moreover, the size of these eddies increases with the measured points moving out of the wall. In the buffer region, the small scale energy-containing eddies with higher frequency are excited. In the outer region, the maximal energy is concentrated in the low-frequency large-scale eddies, and the frequency domain of energy-containing eddies becomes narrower.  相似文献   

3.
4.
Dilute, dispersed two-phase flows arise in many contexts ranging from solid particles or droplets in gas flows to bubbles in liquids. Many of the flows of interest are turbulent, which presents a complex problem to analyze or to determine the dominant physical processes contributing to the observed phenomena. Advances in experimental techniques have made it possible to measure directly turbulent and particle velocity fluctuations in dilute systems. This has provided a counterpart to advances in computational and analytical models and a basis on which to test these models. Three specific areas are considered: the fluctuating forces on an individual particle in an unsteady flow, the response of a solid particle to a turbulent air flow, and the corresponding response of a small bubble in turbulent liquid flows. Results from direct numerical simulations are presented for each of these, including the nonuniform distribution of particles generated by local instantaneous features of the flow. The issue of turbulence modulation at low to moderate void fractions is discussed.  相似文献   

5.
在湍流相干结构动力学方程中,非相干结构成分对相干结构贡献的雷诺应力的模型为涡黏性 模型,即涡黏性系数乘以相干结构平均速度变形率的形式. 基于非相干结构成分对相干结构贡 献的雷诺应力与相干结构速度变形率之间存在相位差的事实,在理论上提出了非相干结构成 分对相干结构贡献的雷诺应力复涡黏性模型的假设. 应用热线测速技术,在低速风洞中对湍 流边界层非相干结构成分对相干结构贡献的雷诺应力与相干结构法向速度变形率之间的相位 关系进行了实验测量. 通过分析湍流相干结构猝发过程中非相干结构成分对相干结构贡献的 雷诺应力与相干结构速度变形率之间的相位关系,研究了相干结构雷诺应力分量与流向速度 法向梯度之间的相位差沿湍流边界层法向的变化规律,肯定了湍流相干结构复涡黏性系数模 型的合理性.  相似文献   

6.
7.
To investigate the relationship between characteristics of the coherent fine scale eddy and a laminar–turbulent transition, a direct numerical simulation (DNS) of a spatially-developing turbulent mixing layer with Reω,0 = 700 was conducted. On the onset of the transition, strong coherent fine scale eddies appears in the mixing layer. The most expected value of maximum azimuthal velocity of the eddy is 2.0 times Kolmogorov velocity (uk), and decreases to 1.2uk, which is an asymptotic value in the fully-developed state, through the transition. The energy dissipation rate around the eddy is twice as high compared with that in the fully-developed state. However, the most expected diameter and eigenvalues ratio of strain rate acting on the coherent fine scale eddy are maintained to be 8 times Kolmogorov length (η) and :β:γ = −5:1:4 in the transition process. In addition to Kelvin–Helmholtz rollers, rib structures do not disappear in the transition process and are composed of lots of coherent fine scale eddies in the fully-developed state instead of a single eddy observed in early stage of the transition or in laminar flow.  相似文献   

8.
This study revealed the three-dimensional instantaneous topologies of the large-scale turbulence structures in the separated flow on the suction surface of wind turbine’s blade during stall delay. These structures are the major contributors to the first two POD (proper orthogonal decomposition) modes. The two kinds of instantaneous flow structures as major contributors to the first POD mode are: (1) extended regions of downwash flow with an upstream upward flow beside it and a compact vortex pair closer to the blade’s leading edge; (2) a large-scale clockwise vortex with strong induced flows. The two kinds of flow structures contributing significantly to the second POD mode are: (1) large counter-rotating vortices inducing strong upward velocities and a series of small vortices; (2) strong downwash flow coming from the leading-edge shear layer with a large and strong vortex on the left side and small vortices upstream. The statistical impacts of these large-scale and energetic structures on the turbulence have also been studied. It was observed that when these turbulence structures were removed from the flow, the peak values of some statistics were significantly reduced.  相似文献   

9.
The variation of main turbulent quantities in an isotropic turbulent flow, such as the decay of turbulent energy and the variation of Taylor microscale of turbulence with time are obtained, by employing a hot-wire anemometer and a nearly isotropic turbulent flow which is produced by a gridscreen located at the entrance of the test section in a low-level turbulence and low-speed wind tunnel in Peking University. The experimental results of the decay of turbulent energy and the variation of Taylor microscale of turbulence with time at the whole period from initial to final stage, normalized in an non-dimensional form, are consistent quite well with the computational results by the theory of the statistical vorticity structure[1]. The experimental results presented in this paper also agree with Townsend's results obtained in earlier years[2] as well as with Bennett's in the seventy's[3].  相似文献   

10.
The turbulence properties of a curved channel flow have been measured by particle tracking method. The results reveal some characteristics of the structure for wall turbulence.  相似文献   

11.
This paper puts forth a simplified dynamic eddy-viscosity subgrid-scale model for the vorticity transport equation which is employed in a large eddy simulation study of freely evolving isotropic two-dimensional turbulent flows. The dynamic parameter is averaged in space, thereby retrieving a spatially constant value which only varies in time. The proposed dynamic model is applied to a two-dimensional decaying turbulence problem in a square periodic box, which is a standard prototype of more realistic turbulent flows in the atmosphere and oceans, in order to eliminate any possible errors associated with the boundary conditions or mesh non-uniformities. Compared with high-resolution direct numerical simulations, the performance of the dynamic model is systematically investigated considering various filtering strategies by means of test filters. The effects of the computational resolution and the filtering ratio between the test and the grid filters are also studied by using a huge set of parameters.  相似文献   

12.
13.
Large eddy simulation (LES) is a viable and powerful tool to analyse unsteady three-dimensional turbulent flows. In this article, the method of LES is used to compute a plane turbulent supersonic boundary layer subjected to different pressure gradients. The pressure gradients are generated by allowing the flow to pass in the vicinity of an expansion–compression ramp (inclined backward-facing step with leeward-face angle of 25°) for an upstream Mach number of 2.9. The inflow boundary condition is the main problem for all turbulent wall-bounded flows. An approach to solve this problem is to extract instantaneous velocities, temperature and density data from an auxiliary simulation (inflow generator). To generate an appropriate realistic inflow condition to the inflow generator itself the rescaling technique for compressible flows is used. In this method, Morkovin's hypothesis, in which the total temperature fluctuations are neglected compared with the static temperature fluctuations, is applied to rescale and generate the temperature profile at inlet. This technique was successfully developed and applied by the present author for an LES of subsonic three-dimensional boundary layer of a smooth curved ramp. The present LES results are compared with the available experimental data as well as numerical data. The positive impact of the rescaling formulation of the temperature is proven by the convincing agreement of the obtained results with the experimental data compared with published numerical work and sheds light on the quality of the developed compressible inflow generator.  相似文献   

14.
The effect of free-stream turbulence (FST) on bypass transition in a zero-pressure-gradient boundary layer is investigated by means of Large Eddy Simulation (LES). The broadband turbulent inflow is synthesized to validate the feasibility of LES. Both a zero-thickness plate and one with super-ellipse leading-edge are addressed. The calculated Reynolds-averaged fields are compared with experimental data and decent agreement is achieved. Instantaneous fields show the instability occurs in the lifted low-speed streaks similar to earlier DNS results, which can be ascribed to outer mode. Various inflows with bi-/tri-mode interaction are specified to analyze effects of particular frequency mode on the instability pattern and multifarious transition or non-transition scenarios are obtained. Outer instability is observed in the cases with one low-frequency mode and one high-frequency mode inflow as reported by Zaki and Durbin (2005), and with one more high-frequency mode appended. Inner instability is observed in the case with a low-frequency dominant inflow, while the high-frequency mode is indispensable to induce the secondary instability. Furthermore, the results show that the transition onset is highly sensitive to low-frequency mode while the transition rate is highly sensitive to high-frequency mode. Finally, the formational frequency of turbulent spot (FFTS) is counted and the frequency of laminar streaks is demonstrated by spectral analysis.  相似文献   

15.
A program incorporating the parallel code of large eddy simulation (LES) and particle transportation model is developed to simulate the motion of particles in an atmospheric turbulent boundary layer (ATBL). A model of particles of 100-micrometer order coupling with large scale ATBL is proposed. Two typical cases are studied, one focuses on the evolution of particle profile in the ATBL and the landing displacement of particles, whereas the other on the motion of particle stream.The English text was polished by Yunming Chen.  相似文献   

16.
A vortex ring impinging on a three-dimensional bump is studied using large eddy simulation for a Reynolds number Re = 4 × 104 based on the initial translation speed and diameter of the vortex ring. The effects of bump height on the vortical flow phenomena and the underlying physical mechanisms are investigated. Based on the analysis of the evolution of vortical structures, two typical kinds of vortical structures, i.e., the wrapping vortices and the hair-pin vortices, are identified and play an important role in the flow state evolution. The circulation of the primary vortex ring reasonably elucidates some typical phases of flow evolution. Furthermore, the mechanism of flow transition from laminar to turbulent state has been revealed based on analysis of turbulent kinetic energy.  相似文献   

17.
A new analysis method is developed to study the double- and triple-correlations of velocity fluctuations inside a stationary three-dimensional turbulent boundary layer (3D-TBL). Experimental eigenvalues and eigenvectors of measured Reynolds stress-tensors are obtained by diagonalization; a set of semi-empirical relationships is derived and these are interpreted (qualitatively) in terms of statistics of gas dynamics. Sample-averaged double- and triple-correlations are Monte Carlp (MC-) simulated, simultaneously, with 3 independent perturbed centered-Gaussians (trial probability density functions) along experimental eigenvectors. Comparisons with corresponding time-averaged measurements show excellent agreement for the double-correlations and qualitative agreement for the triple-correlations. Also, a statistical model for the double-correlations is presented: it can predict the -profiles inside the S-shaped wind tunnel at EPFL, given .  相似文献   

18.
This paper presents the results of an experimental study of the unsteady nature of a hypersonic separated turbulent flow. The nomimal test conditions were a freestream Mach number of 7.8 and a unit Reynolds number of 3.5×107/m. The separated flow was generated using finite span forward facing steps. An array of flush mounted high spatial resolution and fast response platinum film resistance thermometers was used to make multi-channel measurements of the fluctuating surface heat trtansfer within the separated flow. Conditional sampling analysis of the signals shows that the root of separation shock wave consists of a series of compression wave extending over a streamwise length about one half of the incoming boundary layer thickness. The compression waves converge into a single leading shock beyond the boundary layer. The shock structure is unsteady and undergoes large-scale motion in the streamwise direction. The length scale of the motion is about 22 percent of the upstream influence length of the separation shock wave. There exists a wide band of frequency of oscillations of the shock system. Most of the frequencies are in the range of 1–3 kHz. The heat transfer fluctuates intermittently between the undisturbed level and the disturbed level within the range of motion of the separation shock wave. This intermittent phenomenon is considered as the consequence of the large-scale shock system oscillations. Downstream of the range of shock wave motion there is a separated region where the flow experiences continuous compression and no intermittency phenomenon is observed. The project supported by National Natural Science Foundation of China  相似文献   

19.
20.
In this study, a large eddy simulation of the three-dimensional shear flow over a flow-excited Helmholtz resonator has been implemented. The simulations have been performed over a wide range of flow speeds to analyse the effect of the inlet flow properties on the excitation condition. For validation proposes, the results obtained from the numerical simulations have been compared with published experimental data and show that numerical modelling provides an accurate representation of the pressure fluctuations inside the cavity. The main objective of this paper is to gain an understanding of the flow features over a flow-excited Helmholtz resonator. To this end, using the numerical model, the interaction of a turbulent boundary layer with a Helmholtz resonator has been considered, and the characteristics of the flow inside the resonator and over the orifice for various flow conditions are also analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号