首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-speed counter-current chromatography (HSCCC) and preparative high-performance liquid chromatography (prep-HPLC) were successively used for the separation of epigallocatechin and flavonoids from Hypericum perforatum L. The two-phase solvent system composed of ethyl acetate–methanol–water (10:1:10, v/v) was used for HSCCC. About 900 mg of the crude extract was separated by HSCCC, yielding 7.8 mg of quercitrin at a purity of over 97%, 12.6 mg of quercetin at a purity of over 93%, and 38.9 mg of a mixture of hyperoside, isoquercitrin and miquelianin constituting over 97% of the fraction. A mixture of epigallocatechin and avicularin pooled from three HSCCC runs, a total amount of 54.3 mg, was further separated by prep-HPLC yielding 23.4 mg of epigallocatechin and 15.3 mg of avicularin each at a purity of over 97%.  相似文献   

2.
Counter-current chromatography (CCC) was used to isolate chavibetol from the essential oil of leaves of Pimenta pseudocaryophyllus (Gomes) Landrum. Chavibetol was obtained in high purity (98%) and mass recovery (94.4%). Methyleugenol was also isolated. The CCC biphasic solvent system used was composed of hexane:n-butanol:methanol:water (12:4:4:3, v/v/v/v).  相似文献   

3.
A preparative high-speed counter-current chromatography (HSCCC) method was successfully used for isolation of two new minor compounds – alsaticol and alsaticocoumarin A. A two-phase solvent system composed of n-hexane–ethyl acetate–methanol–water (1:1:1:1) was developed. Compounds were obtained from the dichloromethane extract of Peucedanum alsaticum fruits and their identification was performed with NMR and MS methods. Optimized HSCCC offers a rapid method of obtaining new natural compounds.  相似文献   

4.
A combinative method using high-speed counter-current chromatography (HSCCC) and thin layer chromatography (TLC) as an antioxidant autographic assay was developed to separate antioxidant components from the fruits of Psoralea corylifolia. Under the guidance of TLC bioautography, eight compounds including five flavonoids and three coumarins were successfully separated from the fruits of P. corylifolia by HSCCC with an optimized two-phase solvent system, n-hexane–ethyl acetate–methanol–water (1:1.1:1.3:1, v/v/v/v). The separation produced 5.91 mg psoralen, 6.26 mg isopsoralen, 3.19 mg psoralidin, 0.92 mg corylifol A, and 2.43 mg bavachinin with corresponding purities of 99.5, 99.8, 99.4, 96.4, and 99.0%, as well as three sub-fractions, in a single run from 250 mg ethyl acetate fraction of P. corylifolia extract. Following an additional clean-up step by preparative TLC, 0.4 mg 8-prenyldaidzein (purity 91.7%), 4.18 mg neobavaisoflavone (purity 97.4%) and 4.36 mg isobavachalcone (purity 96.8%) were separated from the three individual sub-fractions. The structures of the isolated compounds were identified by 1H NMR and 13C NMR. The results of antioxidant activity estimation by electron spin resonance (ESR) method showed that psoralidin was the most active antioxidant with an IC50 value of 44.7 μM. This is the first report on simultaneous separation of eight compounds from P. corylifolia by HSCCC.  相似文献   

5.
Galactolipids in the fruits of Cucurbita moschata (pumpkin) could not be completely separated by high-performance liquid chromatography (HPLC). Preparative HPLC was not available for preparing major galactolipid monomers in pumpkin. In the present paper, a combination of high-speed counter-current chromatography (HSCCC) and preparative HPLC was used for preparing the galactolipids. A fraction containing galactolipids (Fr60) from the purification of the n-butanol extract of pumpkin by macro-porous resin column chromatography was first separated by HSCCC to result in three sub-fractions of each containing two galactolipid monomers. The three sub-fractions were further separated by preparative HPLC respectively to yield six galactolipid monomers with purity more than 96%. The method is a good one for preparing galactolipid monomers from plant materials for the studies of bioactivities.  相似文献   

6.
Three macrolide antibiotic components – ascomycin, tacrolimus and dihydrotacrolimus – were separated and purified by silver ion high-speed counter-current chromatography (HSCCC). The solvent system consisted of n-hexane–tert-butyl methyl ether–methanol–water (1:3:6:5, v/v) and silver nitrate (0.10 mol/l). The silver ion acted as a π-complexing agent with tacrolimus because of its extra side double bond compared with ascomycin and dihydrotacrolimus. This complexation modified the partition coefficient values and the separation factors of the three components. As a result, ascomycin, tacrolimus and dihydrotacrolimus were purified from 150 mg extracted crude sample with purities of 97.6%, 98.7% and 96.5%, respectively, and yields over 80% (including their tautomers). These results cannot be achieved with the same solvent system but without the addition of silver ion.  相似文献   

7.
High-speed counter-current chromatography (HSCCC) with a two-phase solvent system (hexane–ethanol–acetonitrile–water 10:8:1:1, v/v) was applied to examine the leaves of Hortia oreadica, which afforded the known limonoid guyanin (1), the alkaloids rutaecarpin (2) and dictamnine (6), the dihydrocinnamic acid derivatives methyl 5,7-dimethoxy-2,2-dimethyl-2H-1-benzopyran-6-propanoate (3), 5,8-dimethoxy-2,2-dimethyl-2H-1-benzopyran-6-propanoic acid (4), together with the new E-3,4-dimethoxy-α(3-hydroxy-4-carbomethoxyphenyl)cinnamic acid (5). The recovery of compounds 1–6 was determined by comparison with LC-atmospheric pressure chemical ionization MS/MS data: 66.2%, 93.1%, 102.5%, 101.2%, 99.0% and 84.9%, respectively. Compound 3 showed IC50 of 23.6 μM against Plasmodium falciparum and 15.6 μM against Trypanosoma brucei rhodesienses and was not toxic to KB cells (IC50 > 100 μM).  相似文献   

8.
The proanthocyanidin extract from tea (Camellia sinensis) leaves was purified for the further study of the biological role of proanthocyanidins in blister blight leaf disease of tea, which is caused by the fungus Exobasidium vexans. An aqueous acetone extract of proanthocyanidins prepared from healthy tea leaves was partially purified using Sephadex LH-20 chromatography. The crude proanthocyanidin extract obtained was fractionated with high-speed counter-current chromatography (HSCCC) using the solvent system n-hexane–EtOAc–MeOH–water (1:5:1:5). The purity of the each isolated fraction after a single HSCCC run was evaluated by high-performance liquid chromatography (HPLC). Seven fractions of high purity were isolated. The identity of the compound present in each fraction isolated was established using electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy. Five proanthocyanidins and two flavanol digallates, (−)-epigallocatechin digallate (EGCDG) and (−)-epicatechin digallate (ECDG) were isolated. Comparison of spectral data of the proanthocyanidins isolated with those previously reported indicated that all five were known B-type proanthocyanidins with 2,3-cis stereochemistry in both the upper (u-unit) and the terminal (t-unit) units, and 4R configuration of the C-ring in the u-unit. The proanthocyanidins were established to be dimers composed of (−)-epigallocatechin gallate (EGCG), (−)-epicatechin gallate (ECG) and (−)-epiafzelechin gallate (EAG) units with the following structures: EGCG-(4β → 6)-EGCG, ECG-(4β → 6)-EGCG, EGCG-(4β → 6)-ECG, EAG-(4β → 6)-EGCG, ECG-(4β → 6)-ECG by analysis of spectral data. Therefore HSCCC offers a powerful method for the separation of a group of closely related naturally occurring compounds.  相似文献   

9.
Su YP  Shen J  Xu Y  Zheng M  Yu CX 《Journal of chromatography. A》2011,1218(23):3695-3698
Alkaloids in Gelsemium elegans possess a variety of therapeutic properties, including tumor suppression, analgesic and anti-inflammatory effects. In China, G. elegans has been used for centuries to treat a variety of medical conditions, including chronic pain and skin ulcer. Methods currently used to separate the active components of G. elegans are time-consuming and have low recovery. In the present study, we used pH-zone-refining counter-current chromatography to separate major alkaloids from a crude extract of G. elegans. The two-phase solvent system was methyl tert-butyl ether (MtBE)/acetonitrile/water (3:1.5:4, v/v). Triethylamine (20 mM) was added to the upper organic stationary phase as a retainer. Hydrochloric acid (10 mM) was added to the lower aqueous phase as an eluter. From 1.5 g of crude extract, we obtained 312 mg gelsemine, 420 mg koumine and 195 mg gelsevirine, with purities at 94.8%, 95.9% and 96.7%, respectively, which were determined by HPLC at 256 nm. The chemical identity of the isolated compounds was verified by electrospray ionization-mass spectrometry (ESI-MS), 1H NMR and 13C NMR. These results demonstrated that pH-zone-refining counter-current chromatography is an effective method to separate and purify major alkaloids from G. elegans.  相似文献   

10.
Although the medicinal plant and food Nigella glandulifera Freyn has been researched for decades, isobenzofuranones have never been isolated before. Two isobenzofuranone derivatives and two saponins were successfully separated and purified from seeds of N. glandulifera Freyn by high-speed counter-current chromatography (HSCCC) with the optimized two-phase solvent system, n-hexane-ethyl acetate–methanol–water (7:3:5:5, v/v). Salfredin B11 (22.1 mg, HPLC purity 95.3%), 5, 7-dihydroxy-6-(3-methybut-2-enyl) isobenzofuran-1(3H)-one (18.9 mg, HPLC purity 97.3%) and crude sample 2 (555 mg) were separated from 600 mg of ethyl acetate extract of N. glandulifera Freyn. Following a cleaning-up step by chromatography on Sephadex LH-20, hederagenin (12 mg) and 3-O-[β-d-xylopyranosyl-(1 → 3)-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosyl]-hederagenin (45 mg) were separated from sample 2. All of the fractions before peak II were collected and subjected to a Sephadex LH-20 column and eluted by methanol, two of triterpene saponins (12 mg of hederagenin and 45 mg of 3-O-[β-d-xylopyranosyl-(1 → 3)-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosyl]-hederagenin) were isolated. The structures of peak fractions were identified by IR, electron ionization MS, 1H NMR and 13C NMR. 5, 7-Dihydroxy-6-(3-methybut-2-enyl) isobenzofuran-1(3H)-one was isolated for the first time from higher plant and salfredin B11 was isolated for the first time in this plant.  相似文献   

11.
建立了分离岩黄连2种生物碱的方法。岩黄连醇提物经溶剂萃取后的水相提取物,经过硅胶柱层析粗分离,对其中一个流分采用高速逆流色谱法,以正己烷-乙酸乙酯-正丁醇-乙醇-水-氨水(体积比为0.4:1.5:4:0.4:5:0.11)为两相溶剂系统,下相为固定相,上相为流动相,通过一次高速逆流色谱,即可从64.81 mg样品中分离得到9.28 mg纯度为97.0%的去氢碎叶紫堇碱(dehydrocheilanthifoline)和4.38 mg纯度为90.7%的脱氢异阿朴卡维汀(dehydroisoapocavidine),并通过与对照品HPLC保留时间的比较,以及ESI-MS测定分子量,确认了化合物的结构。该方法降低了反复的柱层析导致的样品损失,也为上述两种化合物的药理研究提供了物质基础。  相似文献   

12.
The alkaloid ricinine, an insecticide for leaf-cutting ant (Atta sexdens rubropilosa), was obtained from Ricinus communis. A two-phase solvent system composed of CH2Cl2/EtOH/H2O (93:35:72, v/v/v) was used for high-speed counter-current chromatographic (HSCCC) isolation of ricinine in high yield and with over 96% purity, as determined by liquid and gas chromatography–mass spectrometry (LC–MS and GC–MS). Identification of ricinine was performed by comparison of 1H NMR, 13C NMR and LC–MS/MS data.  相似文献   

13.
Polysaccharides from a crude extract of Auricularia polytricha were separated by high-speed countercurrent chromatography (HSCCC). The separation was performed with an aqueous two-phase system of PEG1000–K2HPO4–KH2PO4–H2O (0.5:1.25:1.25:7.0, w/w). The crude sample (2.0 g) was successfully separated into three polysaccharide components of AAPS-1 (192 mg), AAPS-2 (137 mg), and AAPS-3 (98 mg) with molecular weights of 162, 259, and 483 kDa, respectively. These compounds were tested for growth inhibition of transplanted S180 sarcoma in mice. AAPS-2 had an inhibition rate of 40.4%. The structure of AAPS-2 was elucidated from partial hydrolysis, periodate oxidation, acetylation, methylation analysis, and NMR spectroscopy (1H, 13C). These results showed AAPS-2 is a polysaccharide with a backbone of (1 → 3)-linked-β-d-glucopyranosyl and (1 → 3, 6)-linked-β-d-glucopyranosyl residues in a 2:1 ratio, and has one terminal (1→)-β-d-glucopyranosyl at the O-6 position of (1→3, 6)-linked-β-d-glucopyranosyl of the main chain.  相似文献   

14.
Liu M  Zhang S  Yang C  Xia Y  Liu J  Liang J 《色谱》2011,29(5):430-434
应用高速逆流色谱法分离制备了生附子中的3个C19型二萜生物碱类化合物。以正己烷-乙酸乙酯-甲醇-水(3:5:4:5, v/v/v/v)为两相溶剂系统,上相为固定相,下相为流动相,在主机转速850 r/min、流动相流速2.0 mL/min、检测波长235 nm条件下进行分离制备;一次性从90 mg附子总碱粗提物中分离制备得到15.3 mg北草乌碱,35.1 mg中乌头碱和22.7 mg次乌头碱,经高效液相色谱分析,测得它们的纯度分别为97.9%、96.2%和99.2%。并应用波谱(电喷雾离子质谱、核磁共振氢谱和核磁共振13C谱)解析法确定了它们的结构。利用该方法可以对生附子中的二萜类生物碱成分进行快速的分离和纯化  相似文献   

15.
Li S  He S  Zhong S  Duan X  Ye H  Shi J  Peng A  Chen L 《Journal of chromatography. A》2011,1218(20):3124-3128
The elution-extrusion counter-current chromatography (EECCC) method was firstly developed by Berthod in 2003 and has been used in natural products separation in recent years. The advantages of this method have been well documented such as reducing the separation time and solvent consumption. In the EECCC method, the time point of the extrusion step is very important during the whole separation process as it directly affects the resolutions, separation time and solvent consumption. However, how to choose a suitable time point to perform the extrusion step without decreasing the resolution has not been studied yet. In the present study, a strategy for systematically calculating the time point for extrusion was developed in theory and five bioactive compounds from the extract of Dendrobium chrysototxum Lindl. were separated and compared using normal CCC and EECCC method. Our results demonstrated that the accurate time point to perform the extrusion could be calculated and reduced both separation time and solvent consumption without losing separation performance. Using this EECCC method, five bioactive compounds were separated and purified with high purity. The separation time and solvent consumption were decreased from 200 min to 100 min and 5-2.5L during the separation process while the resolutions were still acceptable. Finally, 63 mg, 48 mg, 97 mg, 162 mg and 43 mg of hydroxyl phenanthrenes and bibenzyls with the purity of 98.7%, 98.0%, 98.2%, 99.0% and 98.7%, respectively were isolated from 1.2 g crude extract of D. chrysototxum Lindl. initially purified by column chromatography in one step separation. The purities of compounds were determined by HPLC. Their structures were identified by electrospray ionization-mass spectrometry (ESI-MS) and NMR.  相似文献   

16.
The original spiral tube support (STS) assembly is improved by changing the shape of the tubing, with 1-cm presses perpendicularly along the length. This modification interrupts the laminar flow of the mobile phase. The tubing in the four return grooves to the center of the rotor is flattened by a specially made pressing tool to increase the number of spiral layers and decrease the dead space volume, thus increasing the column efficiency. The performance of this spiral tube assembly was tested in separations of dipeptides and proteins with suitable polar two-phase solvent systems. The results revealed that the present system yields high partition efficiency with a satisfactory level of stationary phase retention in a short elution time. The present high-speed counter-current chromatographic (HSCCC) system will be efficiently applied to a broad spectrum of two-phase solvent systems including aqueous–aqueous polymer phase systems (TPAS) which are used for separation of biopolymers such as proteins and nucleic acids.  相似文献   

17.
Liu W  Luo J  Kong L 《Journal of chromatography. A》2011,1218(14):1842-1848
A novel separation technique of complexation high-speed counter-current chromatography (HSCCC) using copper ion as a complexation agent was first developed to isolate 5-hydroxyisoflavone isomers from Belamcanda chinensis (L.) DC. According to the partition coefficient and separation factor, the two-phase solvent system composed of light petroleum-ethyl acetate-methanol-water (3:5:3:5, v/v) and copper nitrate (0.10mol/L in the lower phase) was selected. 9.2mg isoirigenin (1), 46.4mg irigenin (2) and 1.2mg 5,7,4'-trihydroxy-6,3',5'-trimethoxyisoflavone (3) were simultaneously purified from 100mg crude extract by HSCCC with the purity of 95.06%, 96.98% and 93.69%, respectively. As evidenced by the results of UV-Vis spectroscopy, the stoichiometries of the copper ion with the three 5-hydroxyisoflavones were all 1:1 and their chelating power was 3>2>1. Those explained the complexation HSCCC behavior. It is the first report that includes the practical application of complexation HSCCC and explanation of its chromatographic behavior.  相似文献   

18.
In our research into chlorophylls of marine dinoflagellates, chlorophyll a was separated rapidly from the hexane extract of Amphidinium carterae in three steps. The first step was silica gel column chromatography, where elution was performed with 0–50% ethyl acetate in n-hexane. The second was high-speed counter-current chromatography using a two-phase solvent system consisting of n-hexane–ethyl acetate–methanol–water (5:5:5:1, v/v), and the third step was preparative reversed-phase high-performance liquid chromatography using a solvent system of acetone–water (89:11, v/v). HPLC analysis showed that the purity of chlorophyll a from the second step was over 83%, and after the third it was over 99%. Thirty milligrams of chlorophyll a was isolated from a crude sample of 250 mg of chlorophylls, and its structure was identified by analyzing its MS, 1H NMR and 13C NMR spectra.  相似文献   

19.
Analytical high-speed counter-current chromatography (HSCCC), a unique liquid-to-liquid separation technology, has an inherent capability to provide perfect fractionation for tracking active ingredients of medicinal herbs, in a quick, efficient, and high-recovery manner. A high throughput screening (HTS) method which utilizes a novel biosensor that selectively detects apoptosis based on the fluorescence resonance energy transfer (FRET) technique, was newly established and proved to be very sensitive in detecting apoptosis induced by various known anticancer drugs. The first combination of both advanced techniques formed an efficient platform for drug discovery and succeeded in quickly identifying the most potent apoptotic constituent of a Chinese herb namely Isodon eriocalyx. The system of n-hexane/ethyl acetate/methanol/water was used as the separation solvent. The solvent ratio was first set at 3:5:3:5 to check the water-soluble part of the crude extract, and then 1:1:1:1 was used to isolate the target compounds. The active fraction was tracked and purified continuously using HSCCC which was guided by the apoptosis detection at gradually decreased drug concentrations. As a result, the most potent apoptosis inducer in this herb was discovered by analytical HSCCC equipped with a 16 ml mini-coil column, using less than 50 ml diphase solvent, from about 50 mg active fraction. It was identified as eriocalyxin B, a well-known antitumor natural product, by NMR analysis of the HSCCC purified fraction.  相似文献   

20.
Flavan-3-ol phloroglucinol adducts were synthesised through acid catalysed degradation of a procyanidins-rich grape seed extract in the presence of phloroglucinol. The reaction mixture (3.3 g) was fractionated without further sample preparation using the all-liquid chromatographic technique of high-speed counter-current chromatography (HSCCC). Selected solvent systems were hexane-ethyl acetate-methanol-water (0.1:5:0.1:5, v/v/v/v) and (1.5:10:1.5:10, v/v/v/v). The fractions obtained were found to contain almost pure compounds, in some cases final purification was achieved by preparative HPLC. The so-obtained pure standards of (+)catechin-(4alpha-->2)-phloroglucinol, (-)epicatechin-(4beta-->2)-phloroglucinol, (+)catechine, (-)epicatechin-3-O-galloyl-(4beta-->2)-phloroglucinol, (-)epicatechin, and (-)epicatechin gallate are required for quantification of acid-catalysed phloroglucinol degradation products of procyanidins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号