首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《合成通讯》2013,43(15):2433-2439
ABSTRACT

Bi(III) salts such as BiCl3, Bi(TFA)3 and Bi(OTf)3 were found to be efficient catalysts for the transformation of trimethylsilyl (TMS) and tetrahydropyranyl (THP) ethers to their corresponding acetates and formates with acetic acid and ethyl formate. Selective acetylation and formylation of TMS and THP ethers of alcohols in the presence of phenolic TMS and THP ethers make this method a useful and practical procedure in organic synthesis.  相似文献   

2.
HO–adduct radicals have been investigated and confirmed as the common initial intermediates in TiO2 photocatalysis and Fenton degradations of water‐insoluble aromatics. However, the evolution of HO–adduct radicals to phenols has not been completely clarified. When 4‐d‐toluene and p‐xylene were degraded by TiO2 photocatalysis and Fenton reactions, respectively, a portion of the 4‐deuterium or 4‐CH3 group (18–100 %) at the attacked ipso position shifted to the adjacent position of the ring in the formed phenols (NIH shift; NIH is short for the National Institutes of Health, to honor the place where this phenomenon was first discovered). The results, combined with the observation of a key dienyl cationic intermediate by in situ attenuated total reflectance FTIR spectroscopy, indicate that, for the evolution of HO–adduct radicals, a mixed mechanism of both the carbocation intermediate pathway and O2‐capturing pathway occurs in both aqueous TiO2 photocatalysis and aqueous Fenton reactions.  相似文献   

3.
 A variety of TMS and THP ethers are efficiently converted to their corresponding acetates and benzoates with acetic and benzoic anhydrides in the presence of catalytic amounts of Bi(III) salts such as BiCl3, Bi(TFA)3, and Bi(OTf)3. The present method is also effective for the selective acetylation and benzoylation of TMS and THP ethers of alcohols in the presence of phenolic ethers.  相似文献   

4.
A mononuclear iron(II) complex, Et4N[Fe(C10H6NO2)3], coordinated by three 1‐nitroso‐2‐naphtholate ligands in a fac‐N3O3 geometry, was initiated to catalyze the direct hydroxylation of aromatic compounds to phenols in the presence of H2O2 under mild conditions. Various reaction parameters, including the catalyst dosage, temperature, mole ratio of H2O2 to benzene, reaction time and solvents which could affect the hydroxylation activity of the catalyst, were investigated systematically for benzene hydroxylation to obtain ideal benzene conversion and high phenol distribution. Under the optimum conditions, the benzene conversion was 10.2% and only phenol was detected. The catalyst was also found to be active towards hydroxylation of other aromatic compounds with high substrate conversions. The hydroxyl radical formed due to the reaction of the catalyst and H2O2 was determined to be the crucial active intermediate in the hydroxylation. A rational pathway for the formation of the hydroxyl radical was proposed and justified by the density functional theory calculations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
舒世立  张硕旭 《化学通报》2015,78(8):702-709
邻苯二酚和对苯二酚均为重要的化工原料和中间体。以过氧化氢为氧化剂,由苯酚直接羟基化合成苯二酚具有反应条件温和、环境友好的特点,近年来受到各国研究者的重视。本文综述了苯酚过氧化氢直接羟基化合成苯二酚所用催化剂的研究进展,主要介绍了复合金属氧化物、杂多酸盐和分子筛等几类催化剂的制备、性能、特点和发展的方向。  相似文献   

6.
Summary.  A variety of TMS and THP ethers are efficiently converted to their corresponding acetates and benzoates with acetic and benzoic anhydrides in the presence of catalytic amounts of Bi(III) salts such as BiCl3, Bi(TFA)3, and Bi(OTf)3. The present method is also effective for the selective acetylation and benzoylation of TMS and THP ethers of alcohols in the presence of phenolic ethers. Received May 21, 2001. Accepted June 25, 2001  相似文献   

7.
Water pollution derived from organic pollutants is one of the global environmental problems. The Fenton reaction using Fe2+ as a homogeneous catalyst has been known as one of clean methods for oxidative degradation of organic pollutants. Here, a layered double hydroxide (Fe2+Al3+-LDH) containing Fe2+ and Al3+ in the structure was used to develop a “heterogeneous” Fenton catalyst capable of mineralizing organic pollutants. We found that sulfate ion (SO42−) immobilized on the Fe2+Al3+-LDH significantly facilitated oxidative degradation (mineralization) of phenol as a model compound of water pollutants to carbon dioxide (CO2) in a heterogeneous Fenton process. The phenol conversion and mineralization efficiency to CO2 reached >99% and ca. 50%, respectively, even with a reaction time of only 60 min.  相似文献   

8.
The mass spectra of trimethylsilyl (TMS) ethers of 2-methoxyphenols show abundant [M–30]+˙ ions originating from consecutive loss of two methyl radicals. This is illustrated by comparison of the accurate mass-measured and linked-scan spectra of the TMS derivatives of 2-methoxyphenol (guaiacol), 4-hydroxy-3-methoxybenzaldehyde (vanillin) and 3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid methyl ester (ferulic acid methyl ester) with those of the TMS derivatives of phenol, 4-hydroxybenzaldehyde, 3-(4-hydroxyphenyl)-2-propenoic acid methyl ester (p-coumaric acid methyl ester), 3-methoxyphenol and 4-methoxyphenol. This distinctive ortho effect is valuable in the identification of isomeric phenolic compounds. In the spectra of the TMS derivatives of 2-ethoxyphenol and 2-propoxyphenol the sequential loss of two radicals is less pronounced, because elimination of the side-chain and a methyl group with rearrangement and hydrogen migration is competitive.  相似文献   

9.
The biodegradation of compounds with C−F bonds is challenging due to the fact that these bonds are stronger than the C−H bond in methane. In this work, results on the unprecedented reactivity of a biomimetic model complex that contains an N-bridged diiron-phthalocyanine are presented; this model complex is shown to react with perfluorinated arenes under addition of H2O2 effectively. To get mechanistic insight into this unusual reactivity, detailed density functional theory calculations on the mechanism of C6F6 activation by an iron(IV)-oxo active species of the N-bridged diiron phthalocyanine system were performed. Our studies show that the reaction proceeds through a rate-determining electrophilic C−O addition reaction followed by a 1,2-fluoride shift to give the ketone product, which can further rearrange to the phenol. A thermochemical analysis shows that the weakest C−F bond is the aliphatic C−F bond in the ketone intermediate. The oxidative defluorination of perfluoroaromatics is demonstrated to proceed through a completely different mechanism compared to that of aromatic C−H hydroxylation by iron(IV)-oxo intermediates such as cytochrome P450 Compound I.  相似文献   

10.
Electrospray ionization (ESI) mass spectrometry (MS) and tandem mass spectrometry (MS/MS) were used to monitor the oxidation of phenol by a novel heterogeneous Fenton system based on a Fe(0)/Fe(3)O(4) composite and H(2)O(2). On-line ESI-MS(/MS) shows that this heterogeneous system promotes prompt oxidation of phenol to hydroquinone, which is subsequently oxidized to quinone, other cyclic poly-hydroxylated intermediates and an acyclic carboxylic acid. A peroxide-type intermediate, probably formed via an electrophilic attack of HOO(.) on the phenol ring, was also intercepted and characterized. ESI-MS(/MS) monitoring of the oxidation of two other model aromatic compounds, benzene and chlorobenzene, indicates the participation of analogous intermediates. These results suggest that oxidation by the heterogeneous system is promoted by highly reactive HO(.) and HOO(.) radicals generated from H(2)O(2) on the surface of the Fe(0)/Fe(3)O(4) composite via a classical Fenton-like mechanism.  相似文献   

11.
The present work synthesizes La-Cu4FeAICO3 catalyst under microwave irradiation and characterizes its structure using XRD and IR techniques. The results show that the obtained La-Cu4FeAICO3 has a hydrotalcite structure. In the phenol hydroxylation with H2O2 catalyzed by La-Cu4FeAICO3, the effects of reaction time and phenol/H2O2 molar ratio on the phenol hydroxylation, and relationships between the initial hydroxylation rate with concentration of the catalyst, phenol, H2O2 and reaction temperature are also investigated in details. It is shown the phenol conversion can reach 50.09% (mol percent) in the phenol hydroxylation catalyzed by La-Cu4FeAICO3, under the reaction conditions of the molar ratio of phenol/H2O21/2, the amount ratio of phenol/catalyst 20, reaction temperature 343 K, reaction time 120 min, 10 ml_ distilled water as solvent. Moreover, a kinetic equation of v = k[La-Cu4FeAlCO3][C6H5OH][H2O2]. and the activation energy of E a=58.37 kJ/mol are obtained according to the kinetic studies. Due to the fact that the HO-Cu+-OH species are detected in La-Cu4FeAICO3/H2O2 system by XPS, the new mechanism about the generation of hydroxyl free radicals in the phenol hydroxylation is proposed, which is supposed that HO-Cu+-OH species are transition state in this reaction.  相似文献   

12.
Photoinduced hydroxylation of neat deaerated benzene to phenol occurred under visible‐light irradiation of 2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone (DDQ), which acts as a super photooxidant in the presence of water. Photocatalytic solvent‐free hydroxylation of benzene derivatives with electron‐withdrawing substituents such as benzonitrile, nitrobenzene, and trifluoromethylbenzene used as neat solvents has been achieved for the first time by using DDQ as a super photooxidant to yield the corresponding phenol derivatives and 2,3‐dichloro‐5,6‐dicyanohydroquinone (DDQH2) in the presence of water under deaerated conditions. In the presence of dioxygen and tert‐butyl nitrite, the photocatalytic hydroxylation of neat benzene occurred with DDQ as a photocatalyst to produce phenol. The photocatalytic reactions are initiated by oxidation of benzene derivatives with the singlet and triplet excited states of DDQ to form the corresponding radical cations, which associate with benzene derivatives to produce the dimer radical cations, which were detected by the femto‐ and nanosecond laser flash photolysis measurements to clarify the photocatalytic reaction mechanisms. Radical cations of benzene derivatives react with water to yield the OH‐adduct radicals. On the other hand, DDQ . ? produced by the photoinduced electron transfer from benzene derivatives reacts with the OH‐adduct radicals to yield the corresponding phenol derivatives and DDQH2. DDQ is recovered by the reaction of DDQH2 with tert‐butyl nitrite when DDQ acts as a photocatalyst for the hydroxylation of benzene derivatives by dioxygen.  相似文献   

13.
The sonochemical oxidation of phenol has been examined in airequilibrated aqueous media at various pH’s and at various insonation powers. Its disappearance follows zero-order kinetics at [phenol]initial ~ 30 to 70 μM Three principal intermediate species formed at pH 3: catechol (CC), hydroquinone (HQ), and p-benzoquinone (BQ); at natural pH (5.4–5.7) only catechol and hydroquinone formed. No intermediate species were detected at pH 12 under the conditions used. The sonochemical fate of CC, HQ, and BQ was also examined at pH 3 and at natural pH’s. At pH 3, BQ is the major species formed during insonation of HQ, while HQ is produced during insonation of BQ. In both cases, an additional intermediate formed in trace quantities that is identified as hydroxy-p-benzoquinone. These same intermediate species have been identified in the heterogeneous photocatalyzed oxidation of phenol in irradiated titania suspensions. The present results confirm the important role of ’OH radicals in degradation processes. Although CO2 is the ultimate product in heterogenous photocatalysis, irradiation of a phenolic aqueous solution by ultrasounds showed no loss of total organic carbon (TOC) after several hours, even though the aromatic substrate and the intermediates had degraded. A simple kinetic model/scheme is described to account for the events in the conversion of the substrates to products. It is concluded that the hydrophobic benzoquinone reacts with ¹OH and H¹ radicals at the hydrophobic gas bubble/liquid interface, while the hydrophilic species (phenol, CC, and HQ) react, to a large extent, with the ¹ OH radicals in the solution bulk.  相似文献   

14.
Summary A rapid, accurate and sensitive method is described for the analysis of phenolic compounds, including phenol, alkylphenols, halogenated phenols and nitrophenols in tap, ground and river water samples. The method consists in direct acetylation of the aqueous phenols with acetic anhydride, extraction of the phenol acetates with a C18 disk and analysis by gas chromatography with an ion-trap detector mass spectrometer. Using this method, the sample preparation time was approximately 1.5 h for six 1-L water samples, and recoveries for most of the phenolic compounds studied were more than 80% at concentration levels of 0.1 and 1.0g L–1. The detection limits were in the range 2 to 15 ng L–1 for phenol, alkylphenols and halogenated phenols, and 25 to 50 ng L–1 for nitrophenols.  相似文献   

15.
Fe-FSM-16 and Fe-containing mesoporous materials (Fe-JLU-15) prepared by using semifluorinated surfactant as a template, have been synthesized by microwave-hydrothermal (M-H) process and characterized by several spectroscopic techniques. The catalytic activity of these materials was tested for the phenol hydroxylation and wet phenol oxidation with H2O2 under mild reaction conditions. The effect of pH, H2O2/PhOH molar ratio and stability of the catalyst on the oxidation process was also investigated. Phenol oxidation and H2O2 decomposition show that the Fe-JLU-15 is more active than Fe-FSM-16 and more stable in aqueous solution. The total amount of dissolved iron is less than 5 wt% of the iron initially contained in the catalyst. In phenol hydroxylation, these two solids can effectively catalyze the phenol hydroxylation. Catechol and hydroquinone were observed as the major products, with a difference in the product distribution for these solids. The Fe-JLU-15 has a high selectivity for catechol (63.5 % phenol conversion, CAT/HQ = 2.7) while the Fe-FSM-16 shows a high selectivity for hydroquinone (56.8 % phenol conversion, CAT/HQ < 1) under the same reaction conditions.  相似文献   

16.
Phenol, an important bulk organic compound, has diverse applications encompassing both industry and society. Commercially, it is produced through energy intensive three-step cumene process operating at relatively low yield with the co-production of acetone. Several attempts were made for producing phenol through challenging one-step direct hydroxylation of benzene using different oxidants like O2, N2O and H2O2. Liquid phase hydroxylation of benzene using H2O2 found to be more attractive due to its low reaction temperature and environmentally friendly nature (as water is only formed as by-product). The hydroxylation reaction occurs through Fenton’s mechanism; however along with phenol several other products are also formed due to higher reactivity of phenol compared to benzene. Our research group has been working on this reaction for nearly a decade using layered double hydroxides (LDHs) and their derived forms as heterogeneous selective oxidation catalyst. Screening of different LDHs having different metal ions in the layers revealed the necessity of copper for hydroxylation in pyridine. Addition of co-bivalent metal ion along with copper was made in an endeavour to improve the activity that revealed the promising results for CuZnAl LDHs. Efforts were then made to shift from pyridine to environmentally benign solvent, water, for this reaction that showed reasonably good yields with very high selectivity of phenol. Addition of small amount of sulfolane as a co-solvent increased the selectivity for phenol further. The reusability difficulty faced while using as-synthesized LDHs was overcome when calcined LDHs were used. Structure–property-activity relationships were deduced to understand the results observed. The present review besides covering our work also provides the state-of-art on this reaction using different oxidants with emphasis on H2O2.  相似文献   

17.

Abstract  

1-Methylimidazolium hydrogensulfate, [Hmim][HSO4], a Br?nsted acidic room temperature ionic liquid, is used as a catalyst and reaction medium for facile and eco-friendly deprotection of methoxymethyl (MOM) and ethoxymethyl (EOM) ethers to their corresponding alcohols under thermal conditions (Δ) and microwave irradiation (MW). Furthermore, one-pot interconversion to the respective acetates and trimethylsilyl (TMS) ethers was also achieved.  相似文献   

18.
19.
An NMR method for determining the distribution of acetyl groups in cellulose acetates was developed. Treatment of cellulose acetates with acetyl-d3 chloride gave products having simple spectra which could be analyzed quantitatively to give the distribution of acetyl groups in the original sample. The method was applied to studying (1) the hydrolysis of cellulose triacetate with ammonia, (2) the acetylation of cellulose acetate with acetyl chloride, and (3) the acetylation of cellulose acetate with acetic anhydride.  相似文献   

20.
A copper‐catalyzed migratory oxidative‐coupling reaction between nitrones and various ethers/amines exhibited high functional‐group tolerance. Even in aqueous media, the reaction proceeded efficiently. For practical use of this catalysis, a unique sequential Huisgen cycloaddition was demonstrated. Mechanistic investigations revealed that the reaction proceeded through oxidative catalytic activation of ethers/amines to afford iminium/oxonium intermediates by concurrent dual one‐electron abstractions by copper(II) and oxyl radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号