首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Supercritical fluid chromatography was utilized in combination with the Abraham model of linear solvation energy relationship to characterize 11 different HPLC stationary phases. System constants were determined at one supercritical fluid chromatography condition for each stationary phase. The results indicate that several types of silica columns, including type B silica, type C silica, and fused core silica, are very similar in their retention behavior. Several aromatic stationary phases were characterized and it was found that, in contrast to the other phases studied, all of the aromatic stationary phases had positive contributions from the dispersion/cavity (v) term of the linear solvation energy relationship. Several aliphatic phases were characterized and there were several linear solvation energy relationship constants that differentiated the phases from each other, mainly the polar terms (dipolarity and hydrogen bonding). One stationary phase, a fused core pentafluorophenyl (PFP) phase, had very poor regression quality. The column volume of this phase was lower than the others in the study, which may have had some impact on the results of the regression.  相似文献   

2.
Summary We have investigated to which extent retention data, acquired on single capillary columns, can be used for predicting retention factors in a coupled column system. For this purpose we utilized a model mixture of 18 lipid components with widely different vapor pressures and polarities. The sample was chromatographed on two columns, SB-biphenyl-30 (70% methyl-30% biphenylpolysiloxane) and SB-cyanopropyl-50 (50% methyl-50% cyanopropylsiloxane). Experimental retention factors, acquired in coupled column systems with two columns connected in different order, were thus compared with values calculated from runs on each single column. The agreement between calculated and experimental values generally was better than 5% without any pressure drop correction.To study the possibility of predicting retention behavior in a wide pressure range from a limited number of experiments, we also investigated the relation between solute retention and mobile phase density. We found that all data could be fitted to second order equations, which gives the possibility to optimize the resolution with respect to pressure from a limited number of runs at different pressures.  相似文献   

3.
4.
Summary The dependence of the capacity factor of polycyclic aromatic hydrocarbons on column temperature and on the density of the mobile phase in supercritical-fluid chromatography was investigated using carbon dioxide as the mobile phase. Logarithmic capacity factors of polycyclic aromatic hydrocarbons were obtained as a linear function of the reciprocal column temperature at a constant molar volume of carbon dioxide.The application of the Retention Prediction System to supercritical-fluid chromatography is demonstrated: one can predict the retention of polycyclic aromatic hydrocarbons using equations including column temperature, density and the physico-chemical properties of the solutes as the parameters.  相似文献   

5.
Summary Effects of column temperature on the retention behaviour of aromatic hydrocarbons and dialkyl phthalates were investigated in capillary supercritical fluid chromatography (SFC) with carbon dioxide as the mobile phase. Negative temperature programming could partly replace pressure programming. Positive temperature programming was applicable to solutes with proper volatility, in which gas chromatography-like retention mechanism (partition process) was involved.  相似文献   

6.
A relatively new stationary phase containing a polar group embedded in a hydrophobic backbone (i.e., ACE ® C18‐amide) was evaluated for use in supercritical fluid chromatography. The amide‐based column was compared with columns packed with bare silica, C18 silica, and a terminal‐amide silica phase. The system was held at supercritical pressure and temperature with a mobile phase composition of CO2 and methanol as cosolvent. The linear solvation energy relationship model was used to evaluate the behavior of these stationary phases, relating the retention factor of selected probes to specific chromatographic interactions. A five‐component test mixture, consisting of a group of drug‐like molecules was separated isocratically. The results show that the C18‐amide stationary phase provided a combination of interactions contributing to the retention of the probe compounds. The hydrophobic interactions are favorable; however, the electron donating ability of the embedded amide group shows a large positive interaction. Under the chromatographic conditions used, the C18‐amide column was able to provide baseline resolution of all the drug‐like probe compounds in a text mixture, while the other columns tested did not.  相似文献   

7.
Summary The application of alkylarylketones and n-alkanes as retention index scale standards in supercritical fluid chromatography has been examined using a packed polystyrene-divinylbenzene column. The two scales gave comparable results but the alkylarylketone scale gave comparable results but the alkylarylketone scale was considered to have a wider application as it could also be used when modifiers were added to the mobile phase. The changes in the retention indices of a number of aromatic test compounds were used to compare the selectivity of the separation under different temperature and pressure conditions and in the presence of modifiers.  相似文献   

8.
9.
Supercritical fluid chromatography (SFC) sometimes exhibits GC-like behavior and sometimes LC-like behavior, depending on conditions. However, it is not always clear whether one of these types of behavior, or a combination, operates for a particular set of conditions for every solute in a mixture. For example, some components may be partitioned mostly by their vapor pressures, while others, in the same mixture, are partitioned predominantly by solvent-like properties of the mobile phase. Plots of retetion (as log of the capacity factor) vs. reciprocal temperature at constant pressure reveal a clear change in the character of the separation of well-behaved solutes. A thermodynamic explanation of the observed behavior is given, based on the assumption that partitioning is controlled by the heats of solution of solute in the mobile and stationary phases. A model of SFC retention as it deviates from pure-GC behavior on the same column is presented.  相似文献   

10.
The effects of the pressure drop across the column on retention and efficiency in SFC have been studied. Numerical methods are described which enable the prediction of hold-up time and pressure drop in both packed and open tubular columns. Predictions of both hold-up time and pressure drop are in good agreement with experimental data. The density gradient along the column can be calculated using the numerical methods and a procedure is described which enables the calculation of the overall capacity factors of the solutes from the density profile in the column. Significant variations of the capacity factor are observed along the column. The effect of the density gradient along the column on local diffusivity and dispersion is studied. The column efficiency in systems with significant pressure drops is affected by changes in: the linear velocity of the mobile phase; the diffusion coefficients; and the capacity factors of the solutes along the column. The overall efficiency of the chromatographic system can be calculated if, as is the case for open tubular columns, adequate plate height equations are available.  相似文献   

11.
In cases where high efficiency is required to resolve complex mixtures of either thermally labile or nonvolatile organic compounds, capillary supercritical fluid chromatography may be the most desirable analytical method. While great strides in this new technology have been made over the last few years, several problem areas are requiring increased attention. These include sample introduction systems, pressure reduction at the end of the column, column stability in various supercritical mobile phases, and migration of polar solute molecules. This paper describes the state-of-the-art in capillary SFC with emphasis on the progress made and future needs in the solutions to these specific problems.  相似文献   

12.
13.
Berger  T. A.  Blumberg  L. M. 《Chromatographia》1994,38(1-2):5-11
Summary Under a few sets of extreme conditions, retention gradients caused losses in apparent efficiency in packed column SFC. Under most practical chromatographic conditions no such losses occurred. The efficiency of five columns were measured both individually and connected in series. Under most conditions, no loss occurred. Under a few sets of conditions, the apparent efficiency of the five columns connected in series was as much as 66 % lower than the sum of the efficiencies of the individual columns measured under the same conditions. To observe a loss, the local retention near the column outlet must be unrealistically high and a steep non-linear change in retention is required. Under some sets of conditions, an approximate form of a recently proposed theory predicted losses similar to those observed.  相似文献   

14.
New strategies for sample introduction in supercritical fluid chromatography are reviewed. Both open tubular and packed column systems are examined as the injection demands of each column type are addressed. In addition to advances made in solvent injection methods, supercritical fluid extraction (SFE) is discussed as a solventless injection technique for supercritical fluid chromatography.  相似文献   

15.
The adverse effects of injection solvent strength on microbore packed column SFC band broadening are demonstrated and a solventless injection system that eliminates these effects is introduced. The injection system removes solvent in a GC-like manner using a retention gap and an on-column capillary GC syringe. The analyte is delivered to the analytical column in a solvent-free plug of supercritical fluid mobile phase.  相似文献   

16.
A splitless injection technique, allowing 0.5 μl injections on 50 μm i.d. columns, has been developed.  相似文献   

17.
Ionic liquids (ILs) are promising gas chromatography (GC) stationary phases due to their high thermal stability, negligible vapor pressure, and ability to solvate a broad range of analytes. The tunability of ILs allows for structure modification in pursuit of enhanced separation selectivity and control of analyte elution order. In this study, the solvation parameter model is used to characterize the solvation interactions of fifteen ILs containing various cationic functional groups (i.e., dimethylamino, hydroxyl, and ether) and cation types paired with various counter anions, namely, tris(pentafluoroethyl)trifluorophosphate (FAP(-)), bis[(trifluoromethyl)sulfonyl]imide (NTf(2)(-)), thiocyanate (SCN(-)), tricyanomethide (C(CN)(3)(-)), tetracyanoborate (B(CN)(4)(-)), and bis[oxalate(2-)]borate (BOB(-)). The presence of functional groups affected the hydrogen bond basicity, hydrogen bond acidity, as well as dispersion interactions of the resulting ILs, while the change of cation type yielded modest influence on the dipolarity. The switch of counter anions in unfunctionalized ILs produced compounds with higher dipolarity and hydrogen bond basicity. The dipolarity and hydrogen bond basicity of ILs possessing cyano-containing anions appeared to be inversely proportional to the cyano content of the anion. The modification of IL structure resulted in a significant effect on the retention behavior as well as separation selectivity for many solutes, including reversed elution orders of some analytes. This study provides one of the most comprehensive examinations up-to-date on the relation between IL structure and the resulting solvation characteristics and gives tremendous insight into choosing suitable ILs as GC stationary phases for solute specific separations.  相似文献   

18.
19.
Summary Peak compression of a dihydropyridine drug, clevidipine, is obtained in both analytical and semi-preparative scale supercritical fluid chromatography, resulting in extremely high apparent efficiencies. The observed effect, when utilising a carbon dioxide/2-propanol mobile phase with a bare silica stationary phase, is achieved when the retention of the clevidipine peak is controlled to coalesce with a system peak, generated as a result of having water in the sample. Apparent efficiencies of 350,000 and 170,000 plates meter−1 were obtained when 0.25 and 0.5 mg, respectively, are directly injected to a 200×4.6 mm ID 5 μm Hypersil silica packed column. The effect was extended to a semi-preparative system where apparent efficiencies in the region of 2,000,000 plates meter−1 were observed when 0.3 mg of a clevidipine sample containing 80% water was injected to a 250×10 mm I.D. column containing 5-μm Hypersil silica particles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号