首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Zhang L  Yin X 《Electrophoresis》2007,28(8):1281-1288
A simple and powerful microfluidic array chip-based electrophoresis system, which is composed of a 3-D microfluidic array chip, a microvacuum pump-based negative pressure sampling device, a high-voltage supply and an LIF detector, was developed. The 3-D microfluidic array chip was fabricated with three glass plates, in which a common sample waste bus (SW(bus)) was etched in the bottom layer plate to avoid intersecting with the separation channel array. The negative pressure sampling device consists of a microvacuum air pump, a buffer vessel, a 3-way electromagnet valve, and a vacuum gauge. In the sample loading step, all the six samples and buffer solutions were drawn from their reservoirs across the injection intersections through the SW(bus) toward the common sample waste reservoir (SW(T)) by negative pressure. Only 0.5 s was required to obtain six pinched sample plugs at the channel crossings. By switching the three-way electromagnetic valve to release the vacuum in the reservoir SW(T), six sample plugs were simultaneously injected into the separation channels by EOF and electrophoretic separation was activated. Parallel separations of different analytes are presented on the 3-D array chip by using the newly developed sampling device.  相似文献   

2.
Huang H  Xu F  Dai Z  Lin B 《Electrophoresis》2005,26(11):2254-2260
A microchip for integrated isotachophoretic (ITP) preconcentration with gel electrophoretic (GE) separation to decrease the detectable concentration of sodium dodecyl sulfate (SDS)-proteins was developed. Each channel of the chip was designed with a long sample injection channel to increase the sample loading and allow stacking the sample into a narrow zone using discontinuous ITP buffers. The pre-concentrated sample was separated in GE mode in sieving polymer solutions. All the analysis steps including injection, preconcentration, and separation of the ITP-GE process were performed continuously, controlled by a high-voltage power source with sequential voltage switching between the analysis steps. Without deteriorating the peak resolution, four SDS-protein analyses with integrated ITP-GE system resulted in a decreased detectable concentration of approximately 40-fold compared to the GE mode only. A good calibration curve for molecular weights of SDS-proteins indicated that the integrated ITP-GE system can be used for qualitative analysis of unknown protein samples.  相似文献   

3.
Ma B  Zhou X  Wang G  Huang H  Dai Z  Qin J  Lin B 《Electrophoresis》2006,27(24):4904-4909
A quartz microchip integrated isotachophoretic (ITP) preconcentration with zone electrophoresis (ZE) separation was fabricated using a novel multi-point pressure method featured in normal temperature and lower pressure during bonding process. ITP followed by subsequential ZE of two flavonoids, quercetin and isorhamnetin on the microchip was performed consecutively on the homemade microfluidic workstation with UV detection, resulting in a decreased detectable concentration of 32-fold, compared to the ZE mode only, and their detection limits decreased down to 0.2 microg/mL and 1.2 microg/mL, respectively.  相似文献   

4.
Hirokawa T  Takayama Y  Arai A  Xu Z 《Electrophoresis》2008,29(9):1829-1835
Aiming to achieve high-performance analysis of DNA fragments using microchip electrophoresis, we developed a novel sample injection method, which was given the name of floating electrokinetic supercharging (FEKS). In the method, electrokinetic injection (EKI) and ITP preconcentration of samples was performed in a separation channel, connecting two reservoir ports (P3 and P4) on a cross-geometry microchip. At these two stages, side channels, crossing the separation channel, and their ports (P1 and P2) were electrically floated. After the ITP-stacked zones passed the cross-part, they were eluted for detection by using leading ions from P1 and P2 that enabled electrophoresis mode changing rapidly from ITP to zone electrophoresis (ZE). Possible sample leakage at the cross-part toward P1 and P2 was studied in detail on the basis of computer simulation using a CFD-ACE+ software and real experiments, through which it was validated that the analyte recovery to the separation channel was almost complete. The FEKS method successfully contributed to higher resolution and shorter analysis time of DNA fragments on the cross-microchip owing to more rapid switching from ITP status to ZE separation in comparison with our previous EKS procedure realized on a single-channel microchip. Without any degradation of resolution, the achieved LODs were on average ten times better than using conventional pinched injection.  相似文献   

5.
Lin CC  Hsu BK  Chen SH 《Electrophoresis》2008,29(6):1228-1236
In this study, we demonstrated an integrated ITP-gel electrophoresis (GE) device on a plastic substrate, in which 50 nL of samples could be hydrodynamically or electrokinetically injected and enriched by ITP into narrow bands and then subsequently introduced into a homogeneous GE channel for separation and detection. This microchip design rendered a simple introduction scheme for creating sandwiched stacking buffer system and flexibilities in choosing separation and stacking buffers independently. We used gel sieving buffers which compositions were different from those for stacking buffers to separate DNA and protein molecules based on sizing mechanism. Compared to conventional microchip GE, the sensitivity of microchip ITP-GE was estimated to increase by one to two orders of magnitude based on the dilution factor of the injected sample and the S/N ratio detected from the electropherogram. Moreover, it is interesting to note that ITP stacking leads to a preferential enhancement for analytes with lower concentrations compared to those with higher concentrations. Therefore, a reduction in the detection dynamic range for ITP-GE was gained. We demonstrated that ITP-GE could lead to 2-4-folds of reduction in the signal dynamic range for two PCR products in a mixture. Such advantage is demonstrated to be useful for the detection of two products amplified from a multiplex PCR in which one product is poorly amplified compared to the other.  相似文献   

6.
A multi-T microchip for integrated field amplified sample stacking (FASS) with CE separation to increase the chip-based capillary electrophoresis (chip-based CE) sensitivity was developed. Volumetrically defined large sample plug was formed in one step within 5s by the negative pressure in headspace of the two sealed sample waste reservoirs produced using a syringe pump equipped with a 3-way valve. Stacking and separation can proceed only by switching the 3-way valve to release the vacuum in headspace of the two sample waste reservoirs. This approach considerably simplified the operations and the equipments for FASS in chip-based CE systems. Migration time precisions of 3.3% and 1.3% RSD for rhodamine123 (Rh123) and fluorescien sodium salt (Flu) in the separation of a mixture of Flu and Rh123 were obtained for nine consecutive determinations with peak height precisions of 4.8% and 3.4% RSD, respectively. Compared with the chip-based CE on the cross microchip, the sensitivity for analysis of FlTC, FITC-labeled valine (Val) and Alanine (Ala) increased 55-, 41- and 43-fold, respectively.  相似文献   

7.
Xu Z  Hirokawa T 《Electrophoresis》2004,25(14):2357-2362
We developed a novel on-line preconcentration procedure for microchip gel electrophoresis (MCGE), which enables application of electrokinetic supercharging (EKS) for highly sensitive detection of DNA fragments on a cross-geometry microchip. In comparison with conventional pinched injection using the cross microchip, the present approach allows loading a much larger amount of the sample by taking advantage of a newly developed operational mode. In order to obtain high preconcentration effect and prevent splitting of an enriched sample into subchannels, i.e., off the detector range, effects of the voltage applied on the reservoirs and the time of isotachophoretic preconcentration were examined. The optimal balance between the voltage and time was found for a high-sensitivity analysis of DNA fragments. After experimental optimization the detection limit of a 150 bp fragment was as low as 0.22 mg/L (S/N = 3) that is 10 times better than using the conventional pinched injection.  相似文献   

8.
微流控芯片NDA在线衍生测定单细胞中谷胱甘肽   总被引:3,自引:0,他引:3  
单细胞分析对研究细胞内信号传递和重大疾病的早期诊断等具有重要意义,荧光标记是检测细胞内物质的常用技术,为防止衍生时的过度稀释,大多采用柱前细胞内衍生法,衍生后再用微流控芯片分析,此法操作复杂,需多次离心分离,且能透过细胞膜标记胞内组分的荧光试剂较少。  相似文献   

9.
Zhang L  Yin X  Fang Z 《Lab on a chip》2006,6(2):258-264
A simple method for injecting well-defined non-biased sample plugs into the separation channel of a microfluidic chip-based capillary electrophoresis system was developed by a combination of flows generated by negative pressure, electrokinetic and hydrostatic forces. This was achieved by using only a single syringe pump and a single voltage supply at constant voltage. In the loading step, a partial vacuum in the headspace of a sealed sample waste reservoir was produced using a syringe pump equipped with a 3-way valve. Almost instantaneously, sample was drawn from the sample reservoir across the injection intersection to the sample waste reservoir by negative pressure. Simultaneously, buffer flow from the remaining two buffer reservoirs pinched the sample flow to form a well-defined sample plug at the channel intersection. In the subsequent separation stage, the vacuum in headspace of the sample waste reservoir was released to terminate all flows generated by negative pressure, and the sample plug at the channel intersection was electrokinetically injected into the separation channel under the potential applied along the separation channel. The liquid levels of the four reservoirs were optimized to prevent sample leakage during the separation stage. The approach considerably simplified the operations and equipment for pinched injection in chip-based CE, and improved the throughput. Migration time precisions of 3.3 and 1.5% RSD for rhodamine123 (Rh123) and fluorescein sodium (Flu) in the separation of a mixture of Flu and Rh123 were obtained for 56 consecutive determinations with peak height precisions of 6.2% and 4.4% RSD for Rh123 and Flu, respectively.  相似文献   

10.
To evaluate organic pollution in water, we did preliminarily studies on high-throughput characterization of organic pollution in water using microchip-based capillary electrophoresis (CE) with laseer-induced fluorescence (LIF) detection. The applied voltage was investigated to control the gated valve injection and CE separation for conventional cross type microchips using a self-made personal computer (PC)-based controller as the voltage supply. We obtained high-throughput data for the reproducible separation of fluorescein isothiocyanate (FITC)-labeled river-water samples using a zwitter-ion based buffer solution to avoid adsorption of the labeled sample onto the channel of a microchip made from quartz glass. We used real samples from the Hino River that flows into Lake Biwa, from ten sampling points and obtained several reproducible peaks in different separation patterns for each sample within 2 min. We successfully demonstrated high-throughput characterization of dissolved organic carbon (DOC) in environmental water using the microchip.  相似文献   

11.
Luo Y  Zhang Q  Qin J  Lin B 《Electrophoresis》2007,28(24):4769-4771
Hydrostatic pressure sample injection method is able to minimize the number of electrodes needed for a microchip electrophoresis process; however, it neither can be applied for electrophoretic DNA sizing, nor can be implemented on the widely used single-cross microchip. This paper presents an injector design that makes the hydrostatic pressure sample injection method suitable for DNA sizing. By introducing an assistant channel into the normal double-cross injector, a rugged DNA sample plug suitable for sizing can be successfully formed within the cross area during the sample loading. This paper also demonstrates that the hydrostatic pressure sample injection can be performed in the single-cross microchip by controlling the radial position of the detection point in the separation channel. Rhodamine 123 and its derivative as model sample were successfully separated.  相似文献   

12.
The research adopted a single-channel microchip as the probe, and focused electrokinetic injection combined with transient isotachophoresis preconcentration technique on capillary electrophoresis microchip to improve the analytical sensitivity of DNA fragments. The channel length, channel width and channel depth of the used microchip were 40.5 mm, and 110 and 50 μm, respectively. The separation was detected by CCD (charge-coupled device) (effective LENGTH=25 mm, 260 nm). A 1/100 diluted sample (0.2 mg/l of each DNA fragment) of commercially available stepladder DNA sample could be baseline separated in 120 s with S/N=2–5. Compared with conventional chip gel electrophoresis, the proposed method is ideally suited to improve the sensitivity of DNA analysis by chip electrophoresis.  相似文献   

13.
Qi LY  Yin XF  Zhang L  Wang M 《Lab on a chip》2008,8(7):1137-1144
A rapid and variable-volume sample loading scheme for chip-based sieving electrophoresis was developed by negative pressure combined with electrokinetic force. This was achieved by using a low-cost microvacuum pump and a single potential supply at a constant voltage. Both 12% linear polyacrylamide (LPA) with a high viscosity of 15000 cP and 2% hydroxyethylcellulose (HEC) with a low viscosity of 102 cP were chosen as the sieving materials to study the behavior and the versatility of the proposed method. To reduce the hydrodynamic resistance in the sampling channel, sieving material was only filled in the separation channel between the buffer waste reservoir (BW) to the edge of the crossed intersection. By applying a subambient pressure to the headspace of sample waste reservoir (SW), sample and buffer solution were drawn immediately from sample reservoir (S) and buffer reservoir (B) across the intersection to SW. At the same time, the charged sample in the sample flow was driven across the interface between the sample flow and the sieving matrix into the sieving material filled separation channel by the applied electric field. The injected sample plug length is in proportion with the loading time. Once the vacuum in SW reservoir was released to activate electrophoretic separation, flows from S and B to SW were immediately terminated by the back flow induced by the difference of the liquid levels in the reservoirs to prevent sample leakage during the separation stage. The sample consumption was about 1.7 x 10(2) nL at a loading time of 1 s for each cycle. Only 0.024 s was required to transport bias-free analyte to the injection point. It is easy to freely choose the sample plug volume in this method by simply changing the loading time and to inject high quality sample plug with non-distorted shape into the separation channel. The system has been proved to possess an exciting potential for improving throughput, repeatability, sensitivity and separation performance of chip-based sieving electrophoresis.  相似文献   

14.
Wang W  Zhou F  Zhao L  Zhang JR  Zhu JJ 《Electrophoresis》2008,29(3):561-566
A simple method of hydrostatic pressure sample injection towards a disposable microchip CE device was developed. The liquid level in the sample reservoir was higher than that in the sample waste reservoir (SWR) by tilting microchip and hydrostatic pressure was generated, the sample was driven to pass through injection channel into SWR. After sample loading, the microchip was levelled for separation under applied high separation voltage. Effects of tilted angle, initial liquid height and injection duration on electrophoresis were investigated. With enough injection duration, the injection result was little affected by tilted angle and initial liquid heights in the reservoirs. Injection duration for obtaining a stable sample plug was mainly dependent on the tilted angle rather than the initial height of liquid. Experimental results were consistent with theoretical prediction. Fluorescence observation and electrochemical detection of dopamine and catechol were employed to verify the feasibility of tilted microchip hydrostatic pressure injection. Good reproducibility of this injection method was obtained. Because the instrumentation was simplified and no additional hardware was needed in this technology, the proposed method would be potentially useful in disposable devices.  相似文献   

15.
Rapid separation of nucleic acids by microchip electrophoresis could streamline many biological applications, but conventional chip injection strategies offer limited sample stacking, and thus limited sensitivity of detection. We demonstrate the use of photopatterned polyacrylamide membranes in a glass microfluidic device, with or without fixed negative charges, for preconcentration of double-stranded DNA prior to electrophoretic separation to enhance detection limits. We compared performance of the two membrane formulations (neutral or negatively charged) as a function of DNA fragment size, preconcentration time, and preconcentration field strength, with the intent of optimizing preconcentration performance without degrading the subsequent electrophoretic separation. Little size-dependent bias was observed for either membrane formulation when concentrating dsDNA > 100 bp in length, while the negatively charged membrane more effectively blocks passage of single-stranded oligonucleotide DNA (20-mer ssDNA). Baseline resolution of a six-band dye-labeled ladder with fragments 100-2000 bp in size was obtained in <120 s of separation time, with peak efficiencies in the range of 2000-15,000 plates/cm, and detection limits as low as 1 pM per single dye-labeled fragment. The degree of preconcentration is tunable by at least 49-fold, although the efficiency of preconcentration was found to have diminishing returns at high field and/or long times. The neutral membrane was found to be more robust than the negatively charged membrane, with approximately 2.5-fold larger peak area during the subsequent separation, and less decrease in resolution upon increasing the preconcentration field strength.  相似文献   

16.
A new highly advanced analytical approach, based on two-dimensional column coupled CE (ITP-CZE) hyphenated with tandem mass spectrometry (MS/MS, here triple quadrupole, QqQ) was developed, evaluated and applied in biomedical field in the present work. Capillary isotachophoresis (ITP) coupled on-line with capillary zone electrophoresis (CZE) used in hydrodynamically closed separation system was favorable for increasing the sample load capacity, increasing the analyte concentration, and removing the deteriorative highly conductive major matrix constituents. These factors considerably reduced the concentration limits of detection (cLOD) and external sample preparation (comparing to single column CZE), and, by that, provided favorable conditions for the mass spectrometry (enhanced signal to noise ratio, reproducibility of measurements, working life of MS). Here, the CZE–ESI combination provided more effective interfacing than ITP–ESI resulting in both a higher obtainable intensity of MS detection signal of the analyte as well as reproducibility of measurements of the analyte’s peak area. The optimized ITP-CZE–ESI-QqQ method was successfully evaluated as for its performance parameters (LOD, LOQ, linearity, precision, recovery/accuracy) and applied for the direct identification and ultratrace (pg mL−1) determination of varenicline and, in addition, identification of its targeted metabolite, 2-hydroxy-varenicline, in unpretreated/diluted human urine. This application example demonstrated the real analytical potential of this new analytical approach and, at the same time, served as currently the most effective routine clinical method for varenicline.  相似文献   

17.
利用芯片电泳方法考察瞬间等速电泳-筛分电泳偶联分析的结果,比较了自由溶液和筛分介质中DNA瞬间等速电泳的预浓缩效果.结果显示,相比较于筛分介质条件,自由溶液瞬间等速电泳有利于改善预浓缩和后续筛分电泳分离效果.对此结果的解释是:自由溶液条件下DNA迁移速度的提高可以延长瞬间等速电泳持续时间,有利于提高预浓缩效率.此外,样品压缩区带在自由溶液-筛分介质界面的二次富集也是预浓缩效果得到改善的原因之一.  相似文献   

18.
This review highlights the methodological and instrumental developments in microchip micellar EKC (MCMEKC) from 1995. The combination of higher separation efficiencies in micellar EKC (MEKC) with high-speed separation in microchip electrophoresis (MCE) should provide high-throughput and high-performance analytical systems. The chip-based separation technique has received considerable attention due to its integration ability without any connector. This advantage allows the development of a multidimensional separation system. Several types of 2-D separation microchips are described in the review. Since complicated channel configurations can easily be fabricated on planar substrates, various sample manipulations can be carried out prior to MCMEKC separations. For example, mixing for on-chip reactions, on-line sample preconcentration, on-chip assay, etc., have been integrated on MEKC microchips. The application of on-line sample preconcentration to MCMEKC can provide not only sensitivity enhancement but also the elucidation of the preconcentration mechanism due to the visualization ability of MCE. The characteristics of these sample manipulations on MEKC microchips are presented in this review. The scope of applications in MCMEKC covers mainly biogenic compounds such as amino acids, peptides, proteins, biogenic amines, DNA, and oestrogens. This review provides a comprehensive table listing the applications in MCMEKC in relation to detection methods.  相似文献   

19.
A flow injection system coupled to a tungsten coil electrothermal atomizer has been developed for on-line separation and preconcentration, using lead as a model element. The system utilizes three-way solenoid valves for sampling, buffering, washing and reconditioning solution management, and the resin column is inserted in the tip of the autosampler arm of a Varian GTA-96. The solenoid valves and tungsten coil power supply were controlled by a computer program written in Visual Basic, interfaced with the built-in Varian software. The system performance was tested by loading the resin column with the sample flowing at 3 ml min−1 for 60 s. Elution was performed automatically by sampling 20 μl of the eluent from a sample cup of the autosampler, and this aliquot was delivered into a 150 W tungsten coil. With Chelex-100 resin, the separation of concomitants was tested with lead in the presence of as much as 1000 mg l−1 of Ca, Mg, Na or K. The model system presented an enrichment factor of 64 at a sampling rate of 30 samples per hour.  相似文献   

20.
The combination of capillary isotachophoresis (ITP) and capillary zone electrophoresis (CZE) in the column-coupling configuration has been optimized in a mode in which the background electrolyte employed in the CZE step was different from the leading and terminating electrolytes of the ITP step. The optimum composition of the electrolyte system was 0.01 M HCl, 0.02 M IMI, 0.2% HEC, pH 7.2 (leading electrolyte), 0.01 M HEPES, pH 8.2 (terminating electrolyte), and 25 mM MES, 50 mM TRIS, 30 mM boric acid, 0.2% HEC, pH 8.3 (background electrolyte). All solutions contained 20% methanol. The timing of the transfer of isotachophoretically stacked analyte zones into the CZE column was also optimized. An ITP–CZE method with UV detection at 270 nm was developed for separation of nine phenolic acids (protocatechuic, syringic, vanillic, cinnamic, ferulic, caffeic, ρ-coumaric, chlorogenic, and gentisic acids) in a model mixture and used for assay of some of these acids in a methanolic extract of herba epilobi. Application of ITP–CZE resulted in 100-fold better sensitivity than conventional CZE; limits of detection ranged between 10 and 60 ng mL−1. When MES–TRIS–borate-based buffer, pH 8.3, was used in the CZE separation step the linearity of the ITP–CZE response was satisfactory (correlation coefficients were from 0.9937 to 0.9777). Repeatability was also satisfactory (RSD values ranged between 0.77% and 1.28% for migration times and between 1.65% and 13.69% for peak area). Revised: 23 March and 27 April 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号