首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A temperature-responsive poly(N-isopropylacrylamide-co-N,N'-methylenebisacrylamide) [poly(NIPAAm-co-BIS)] monolith was prepared via a free-radical polymerization technique using an aqueous redox initiator in solution at -12°C. The effect of the % T (total monomer concentration/100 mL) and % C (cross-linker concentration/100 mL) on the visual form was investigated. The effect of the porogen on the pore structure was characterized by SEM. Under the optimum condition, the monolith for HPLC was successfully prepared and its mechanical strength and permeability have been studied. Furthermore, a temperature-dependent resolution of aromatic ketones was achieved using only water as mobile phase. The increasing interaction between solutes and the monolith was observed when temperature increased. The theoretical plate number of every analyte was more than 10(4).  相似文献   

2.
A temperature-responsive ion-exchange resin (ItBA) has been prepared by grafting poly(N-isopropylacrylamide-co-acrylic acid-co-tert-butylacrylamide; ItBA) onto cross-linked agarose. A carboxymethylated ion exchanger (CM) of similar charge density was also prepared. Maximum adsorption capacities (Bmax) for lactoferrin at 20 °C and 50 °C were determined for both resins by batch adsorption procedures. Dynamic adsorption and desorption characteristics of the CM and ItBA with lactoferrin were established, as well as the ability of ItBA to selectively adsorb and desorb lactoferrin in the presence of other proteins. With the CM-agarose resin there was no significant difference between the Bmax values obtained at 20 °C and 50 °C. However, for the agarose-based ItBA resin the Bmax value at 50 °C was almost three times higher than the Bmax value at 20 °C. Dynamically, lactoferrin adsorbed to the ItBA packed column at 50 °C with a significant proportion of the adsorbed lactoferrin desorbed by reducing the temperature to 20 °C. In addition, anionic proteins did not adsorb to the ItBA packed column, and did not interfere with the dynamic adsorption/desorption behaviour of lactoferrin. These results indicate that this new temperature-responsive agarose-based ItBA resin has potential for the fractionation of whey proteins, with good selectivity for cationic proteins.  相似文献   

3.
Poly(N-isopropylacrylamide) (PIPAAm) brush grafted silica beads, a thermo-responsive chromatographic stationary phase, were prepared through a surface-initiated atom transfer radical polymerization (ATRP) using 2-propanol, N,N-dimethylformamide (DMF), and water as reaction solvents. The rate of grafting PIPAAm on silica bead surfaces was different and found to be dependent on the reactivity of reaction solvent. Temperature-dependent elution profiles of hydrophobic steroids from the prepared-beads-packed columns were found to be different, although the graft amounts of PIPAAm were similar on silica bead surfaces. Especially, prepared beads using 2-propanol exhibited a higher resolution than those using DMF. Calibration curves using glucose and pullulan suggested that beads prepared using DMF prohibited analytes to diffuse into the pores. On the contrary, beads prepared using 2-propanol allowed analytes to diffuse into the pores. The pore diameter of the prepared beads, measured by N(2) adsorption-desorption measurement, suggested that beads using 2-propanol has relatively larger pore diameter than those using DMF. Thus, the reaction solvent in surfaces-initiated ATRP affected the grafting configuration of PIPAAm on porous silica-bead surfaces, leading to the different separation efficiency of stationary phase for bioactive compounds.  相似文献   

4.
Temperature-responsive chromatography for the separation of biomolecules   总被引:2,自引:0,他引:2  
Temperature-responsive chromatography for the separation of biomolecules utilizing poly(N-isopropylacrylamide) (PNIPAAm) and its copolymer-modified stationary phase is performed with an aqueous mobile phase without using organic solvent. The surface properties and function of the stationary phase are controlled by external temperature changes without changing the mobile-phase composition. This analytical system is based on nonspecific adsorption by the reversible transition of a hydrophilic-hydrophobic PNIPAAm-grafted surface. The driving force for retention is hydrophobic interaction between the solute molecules and the hydrophobized polymer chains on the stationary phase surface. The separation of the biomolecules, such as nucleotides and proteins was achieved by a dual temperature- and pH-responsive chromatography system. The electrostatic and hydrophobic interactions could be modulated simultaneously with the temperature in an aqueous mobile phase, thus the separation system would have potential applications in the separation of biomolecules. Additionally, chromatographic matrices prepared by a surface-initiated atom transfer radical polymerization (ATRP) exhibit a strong interaction with analytes, because the polymerization procedure forms a densely packed polymer, called a polymer brush, on the surfaces. The copolymer brush grafted surfaces prepared by ATRP was an effective tool for separating basic biomolecules by modulating the electrostatic and hydrophobic interactions. Applications of thermally responsive columns for the separations of biomolecules are reviewed here.  相似文献   

5.
Poly(N-isopropylacrylamide-co-N-tert-butylacrylamide) [P(IPAAm-co-tBAAm)] brushes were prepared on poly(hydroxy methacrylate) (PHMA) [hydrolyzed poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)] beads having large pores by surface-initiated atom transfer radical polymerization (ATRP) and applied to the stationary phases of thermo-responsive chromatography. Optimized amount of copolymer brushes grafted PHMA beads were able to separate peptides and proteins with narrow peaks and a high resolution. The beads were found to have a specific surface area of 43.0 m2/g by nitrogen gas adsorption method. Copolymer brush of P(IPAAm-co-tBAAm) grafted PHMA beads improved the stationary phase of thermo-responsive chromatography for the all-aqueous separation of peptides and proteins.  相似文献   

6.
Poly(N-isopropylacrylamide) (PIPAAm) brush-grafted porous polystyrene beads with variable grafted polymer densities were prepared using surface-initiated atom transfer radical polymerization (ATRP) for applications in thermo-responsive chromatography. Utilization of these grafted beads as a stationary phase in aqueous chromatographic analysis of insulin provides a graft density-dependent analyte retention behavior. The separations calibration curve on PIPAAm-grafted polystyrene was obtained using pullulan standards and exhibited inflection points attributed to analyte diffusion into bead pores and partitioning into grafted PIPAAm brush surfaces. Presence of these inflection points supports a separation mechanism where insulin penetrates pores in polystyrene beads and hydrophobically interacts with PIPAAm brushes grafted within the pores. Control of PIPAAm brush graft density on polystyrene facilitates effective aqueous phase separation of peptides based on thermally modulated hydrophobic interactions with grafted PIPAAm within stationary phase pores. These results indicated that PIPAAm brush-grafted porous polystyrene beads prepared by surface-initiated ATRP was effective stationary phase of thermo-responsive chromatography for aqueous phase peptide separations.  相似文献   

7.
Song JM  Asthana A  Kim DP 《Talanta》2006,68(3):940-944
Poly(N-isopropylacrylamide) (PNIPAM) is an interesting class of temperature sensitive, water soluble polymer that has a lower critical solution temperature (LCST) of 32 °C. Above the LCST, PNIPAM gets phase-separated and precipitates out from water. The fascinating temperature-sensitive property of PNIPAM has led to a growing interest in diverse fields of applications. Recently, capillary electrochromatography (CEC) has gained attention due to the wide range of applications based on the use of open tubular capillaries. In this paper, the use of phase-separated PNIPAM as a pseudostationary phase for CEC is demonstrated for the detection of single nucleotide polymorphisms (SNPs). Owing to the dynamic coating, the phase-separated PNIPAM particles did not require any immobilization technique and could exist as a mobile stationary phase in the open tubular capillary. The heteroduplex analyses of mutation samples could be successfully performed based on the phase-separated PNIPAM particles in the constructed CEC system. The CEC system, based on PNIPAM particles capable of having a narrow size distribution, shows great potential as an alternative to conventional DNA mutation systems.  相似文献   

8.
Yao LF  He HB  Feng YQ  Da SL 《Talanta》2004,64(1):244-251
The chromatographic performance of a new zirconia stationary phase (DPZ) modified with dodecylamine-N,N-dimethylenephosphonic acid (DDPA) is studied by using positional isomers as probes. The DDPA modified zirconia via one phosphonic group has a polar inner-layer and a non-polar outer-layer on its surface. The alkyl chain of outer-layer provides the hydrophobic interaction, while the polar inner-layer that consists of an amine group and a free phosphonic group provided dipolar and ion-exchange/columbic repellent interaction sites. The effects of methanol content, ionic strength and pH of mobile phase on capacity factors of the solutes are studied in detail, and baseline separations of toluidine, nitroaniline, aminophenol, dihydroxybenzene, and nitrophenol isomers were achieved on the new zirconia stationary phase. In addition, retention mechanism of the isomers on the DDPA-modified zirconia stationary phase is also proposed.  相似文献   

9.
We report here the polymerization of N-isopropyl acrylamide (NIPAM) via the reversible addition fragmentation chain transfer (RAFT) process. Two trithiocarbonates (S,S′-bis(α,α′-dimethyl-α″-acetic acid)-trithiocarbonate and 2-dodecylsulfanylthiocarbonylsulfanyl-2-methyl propionic acid) were used as the chain transfer agents in conjunction with 4,4′-azobis(4-cyanovaleric acid) and 2,2′azobis(2-methylpropionamidine) dihydrochloride as the initiating species. Poly(NIPAM) is a thermo-responsive polymer that has a sharp lower critical solution temperature (LCST). Herein, we investigated the aqueous solution behaviour of well defined p(NIPAM) prepared by the RAFT process as a function of molecular weight (degree of polymerization: 50, 100 and 200) and temperature. Furthermore, we examine the influence of varying concentrations of macromolecular species (neutral polyethylene glycol (Mn - 3400 g/mol) and ionic bovine serum albumin (Mn - 63 000 g/mol)) on the LCST of p(NIPAM). The aqueous solution behaviour was assessed by spectrophotometry, dynamic light scattering and surface tensiometry. The macromolecular additives was found to have a significant effect on the coil to globular transition of the lower molecular weight p(NIPAM).  相似文献   

10.
Poly(N-isopropylacrylamide)-grafted polymer monolith has been achieved using a surface-initiated atom transfer radical polymerization grafting polymerization within the pores of poly(chloromethylstyrene-divinylbenzene) macroporous monolith contained in a 100 mm × 4.6 mm I.D. stainless steel column. The grafted-poly(N-isopropylacrylamide) on the surface of the grafted monolith that was used as chromatographic stationary phase showed a response to the variation of temperatures and/or salt concentrations. This study focus on its salt concentration responsive property and it has been revealed that the hydrophobicity of the grafted monolith can be adjusted by changing salt concentrations in the range of 0.05-2.0 mol/L. A variety of salts including sodium sulfate, ammonium sulfate and sodium chloride exhibited different effects on the alteration of hydrophobicity of the grafted monolith, and the effect of the salts was in the order of sodium sulfate > ammonium sulfate > sodium chloride. Based on this response to salt concentrations, the grafted monolith was applied in hydrophobic interaction chromatography of proteins, and the base-line separation of a six proteins mixture consisting of cytochrome c, myoglobin, ribonuclease A, bovine serum albumin, ovalbumin and thyroglobulin bovine was achieved by a salt gradient elution.  相似文献   

11.
Optical devices were fabricated by sandwiching a “monolithic” poly(N-isopropylacrylamide-co-N-(3-aminopropyl) methacrylamide hydrochloride) (pNIPAm-co-APMAH) microgel layer between two semitransparent Au layers. These devices, referred to as etalons, exhibit characteristic multipeak reflectance spectra, and the position of the peaks in the spectra primarily depends on the distance between the Au surfaces mediated by the microgel layer thickness. Here, we show that the positively charged microgel layer can collapse in the presence of negatively charged single stranded DNA (ssDNA) due to ssDNA induced microgel crosslinking. The collapse results in a change in the etalon's optical properties, which can be used to detect target DNA in a complex mixture.  相似文献   

12.
Poly(N-isopropylacrylamide) (PNIPAAm) copolymers were synthesized in order to obtain co-polymers with a phase transition temperature slightly higher than the physiological temperature, as required by a new drug delivery concept described in a previous paper. Six hydrophilic comonomers bringing about a rise of the phase transition temperature were evaluated. The synthesized copolymers were characterized and the influence of the type and of the amount of the used comonomer on the phase transition temperature was discussed. Among the comonomers, Acrylamide (AAm), N-methyl-N-vinylacetamide (MVA), N-vinylacetamide (NVA), and N-vinyl-2-pyrrolidinone (VPL) were found to be capable to raise the phase transition temperature to a value slightly higher than 37 °C and to have adequate phase transition behavior. The selected four copolymers were subjected to an additional purification step that should make them fit to use as a controlling agent in drug delivery systems.  相似文献   

13.
Physically crosslinked complexes of polyvinyl pyrrolidinone-poly (N-isopropylacrylamide) (PVP-PNIPAAm) were prepared by photopolymerisation from a mixture of the monomers 1-vinyl-2-pyrrolidinone and N-isopropylacrylamide. IR spectroscopy and calorimetry were used to characterise the resulting xerogels. By alternating the monomer feed ratio, copolymers were synthesised to have their own distinctive lower critical solution temperature (LCST). The transition temperature of the gels was established using cloud point measurement and modulated differential scanning calorimeter (MDSC). This ability to shift the phase transition temperature of the copolymers provides excellent flexibility in tailoring transitions for specific uses. Swelling experiments were performed on the copolymer disks in distilled water at varying temperatures to establish the behaviour of the gels above and below phase transition temperature. The results obtained show that below transition temperature, the gels are water soluble but above this temperature they are slightly less water soluble; significantly less water soluble; or water insoluble; depending on the composition and LCST of the gel.  相似文献   

14.
Poly(2-N-carbazolylethyl acrylate) having terminal trimethoxysilyl groups was newly synthesized by radical polymerization and immobilized onto the silica surface (Sil-CEA). The chromatographic property of Sil-CEA was examined by applying polycyclic aromatic hydrocarbons as solutes. Poly(4-vinylpyridine)-modified silica (Sil-VP) and monomeric octadecylated silica (ODS) columns were used as the reference columns. Less sensitivity to molecular hydrophobicity and enhanced molecular planarity selectivity were obtained with Sil-CEA compared to ODS. On the other hand, high retention factors for the analyzed solutes and an opposite elution order for linear and disc-shaped solutes were obtained with Sil-CEA compared with Sil-VP. In this paper, the application for separation of tocopherols was also described.  相似文献   

15.
Several composite hydrogels of poly(N-isopropylacrylamide) (pNIPAAm) with sodium montmorillonite (NaMM) have been synthesized using a fixed polymer/NaMM ratio (4:1 wt./wt.), but various monomer concentrations, in order to obtain hydrogels with different degrees of swelling, and thus different clay contents in the swollen state. For comparison, unfilled pNIPAAm gels have been also prepared at the same concentrations. The equilibrium swelling behaviour of the gels has been studied both in the swollen and in the shrunk state. In the swollen state, the polymer volume fraction increases with the initial monomer concentration C0. In the shrunk state, the polymer fraction in pNIPAAm hydrogels is dependent on the specimen size and on C0, whereas in the composite gels a constant polymer content is observed. When subjected to stepwise heating from 25 to 45 °C, unfilled gels undergo only poor deswelling. By contrast, complete deswelling takes place in composite gels. The latter show half-shrinking times varying over two orders of magnitude, depending on the monomer concentration and on the procedure followed to disperse NaMM, which determine the overall dispersion state of the filler, as evidenced by transmission electron microscopy (TEM). In particular, TEM observations show clay networking above a percolation threshold near 2.5 wt.% of NaMM. The effect of the incorporation of clay on the response to thermal stimuli is discussed in terms of the ability of NaMM to hinder the hydrophobic association of pNIPAAm segments and in terms of its dispersion state. It is suggested that, above the percolation threshold, NaMM forms a hydrophilic, physical network, through which water can flow also above the volume transition temperature, where pNIPAAm acquires a hydrophobic character.  相似文献   

16.
高效液相色谱手性流动相添加法拆分阿卓乳酸对映体   总被引:1,自引:0,他引:1  
张虎  沈芒芒  童胜强  颜继忠 《色谱》2014,32(6):612-615
采用C18反相色谱柱,以磺丁基醚-β-环糊精(SBE-β-CD)作为手性流动相添加剂,建立了阿卓乳酸对映体的高效液相色谱拆分方法。考察了环糊精衍生物类型、手性添加剂浓度、流动相pH、流速和柱温对手性分离的影响,同时探讨了高效液相色谱采用磺丁基醚-β-环糊精分离阿卓乳酸对映体的分离机制及包结常数,确定了色谱条件为YMC-Pack ODS-A C18色谱柱(250 mm×4.6 mm,5 μm),流动相为含25 mmol/LSBE-β-CD的0.1 mol/L磷酸盐缓冲液(pH 2.68)-乙腈(90:10,v/v),流速为0.6 mL/min,柱温为30 ℃,紫外检测波长为220 nm。对映体的保留时间分别为26.65和28.28 min,分离度为1.68。本方法分离度好,简便易行,且比使用手性固定相分离更加经济。  相似文献   

17.
Free radical copolymerizations of N-isopropyl acrylamide (NIPAM) and cationic N-(3-aminopropyl) methacrylamide hydrochloride (APMH) were investigated to prepare amine-functional temperature responsive copolymers. The reactivity ratios for NIPAM and APMH were evaluated in media of different ionic strength (rNIPAM = 0.7 and rAPMH = 0.7-1.2). Phase separation behavior of the random copolymers with only 5 mol% of the APMH was found to be suppressed in pure water at temperatures up to 45 °C due to electrostatic repulsion among the cationic amine groups randomly distributed along the copolymer chain. Alternate sequential addition of PNIPAM/APMH mixtures and pure NIPAM was used to provide increased control of the location of APMH units along the chain. Consequently (close to) homo-PNIPAM block(s) were formed as evidenced by its characteristic phase transition at 33 °C. The influences of the monomer feeding time and feeding interval time to the APMH distribution were investigated to prepare copolymers with thermo-induced phase separation under physiologically relevant temperature and to determine the extent of conjugation to poly(ethylene oxide).  相似文献   

18.
An ultrasound‐assisted aldol condensation reaction has been developed for a range of ketones with a variety of aromatic aldehydes using poly(N‐vinylimidazole) as a solid base catalyst in a liquid‐solid system. The catalyst can be recovered by simple filtration and reused at least 10 times without any significant reduction in its activity. The reaction is also amenable to the large scale, making the procedure potentially useful for industrial applications.  相似文献   

19.
Sol-gel and gel-sol thermal transition of methylcellulose/water, kappa-carrageenan/water and methylcellulose/kappa-carrageenan/water mixtures was investigated utilizing small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC) and oscillatory rheological experiments in temperature regime from 20 to 80 degrees C. Methylcellulose (E461) and kappa-carrageenan (E407) are well-known additives used for gelation in various nutrition and other products. The formulation and characterization of a mixed thermoreversible methylcellulose/kappa-carrageenan/water gel with very interesting double thermal transition gel-sol-gel upon heating was possible. This specific thermal behavior provides a liquid state of the system between the low-temperature and high-temperature gel-state and at the same time allows for the easy temperature tuning of the system's state. As such this system is suggested to be further tested as potential carrier for various functional colloidal systems.  相似文献   

20.
In this study, temperature-/pH-responsive semi-interpenetrating polymer network (semi-IPN) hydrogels based on linear sodium alginate (SA) and cross-linked poly(N-isopropylacrylamide) (PNIPAAm) were prepared. The semi-IPN hydrogels reached an equilibrium deswelling state within 6 h in response to temperature or pH stimuli. Compared with the conventional PNIPAAm hydrogel, their dewelling rate in response to temperature was improved significantly, owing to the formation of a porous structure within the hydrogels in the presence of ionized SA during the polymerization process. Moreover, the deswelling process could be well described with a first-order kinetics equation and it is possible to design any hydrogel with the desired deswelling behavior through the control of the SA content in the semi-IPN hydrogels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号