首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Inorganic arsenic (iAs) has been classified as a type 1 carcinogen and has also been linked to several noncancerous health effects. Prior to 1995, the AsV methylation pathway was generally considered to be a detoxification pathway, but cellular and animal studies involving MMAIII (mono metyl arsonous acid) and DMAIII (dimethyl arsinous acid) have indicated that their toxicities meet or exceed that of iAs, suggesting an activation process. In addition, thiolated arsenic metabolites were observed in urine after oral exposure of inorganic arsenic in some studies, for which the toxicological profile was not yet fully characterized in human cells. Studies have revealed that microorganisms from the gut environment are important contributors to arsenic speciation changes. This presystemic metabolism necessitates the development of protocols that enable the detection of not only inorganic arsenic species, but also pentavalent and trivalent methylated, thiolated arsenicals in a gastrointestinal environment. We aim to study the biotransformation of arsenic (As) using a Simulator of the Human Intestinal Microbial Ecosystem (SHIME). To be able to analyze the arsenicals resulting from biotransformation reactions occurring in this system, a method using liquid chromatography hyphenated to an inductively coupled plasma mass spectrometer (HPLC‐ICP‐MS) was developed. A Hamilton PRP‐X100 anion exchange column was used. The method allowed separation, identification and quantification of AsIII(arsenite), AsV(arsenate), DMAV(dimethylarsinicacid), MMAV(monomethylarsonicacid) and MMMTA (monomethylmonothioarsenate). Attempts to optimize the same method for also separating MMAIII and DMAIII did not succeed. These compounds could be successfully separated using a method based on the use of a Zorbax C18 column. The properties of the column, buffer strength, pH and polar nature of mobile phase were monitored and changed to optimize the developed methods. Linearity, sensitivity, precision, accuracy and resolution of both methods were checked. The combination of the two methods allowed successful quantification of arsenic species in suspensions sampled in vitro from the SHIME reactor or in vivo from the human colon and feces. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Arsenic Speciation in Urine and Blood Reference Materials   总被引:1,自引:0,他引:1  
Acute and chronic exposure to arsenic is a growing problem in the industrialized world. Arsenic is a potent carcinogen and toxin in humans. In the body, arsenic is metabolized to produce several species, including inorganic forms, such as trivalent (AsIII) and pentavalent (AsV), and the methylated metabolites such as monomethylarsonic acid, (MMAV), and dimethylarsinic acid (DMAV), in addition to arsenobetaine (AsB) which is ingested and excreted from the body in the same form. Each of these species has been reported to possess a specific but different degree of toxicity. Thus, not only is the measurement of total As required, but also quantification of the individual metabolites is necessary to evaluate the toxicity and risk assessment of this element. There are a large number of reference materials that are used to validate methodology for the analysis of As in blood and urine, but they are limited to total As concentrations. In this study, the speciation of five arsenic metabolites is reported in blood and urine from commercial available control materials certified for total arsenic levels. The separation was performed with an anion exchange column using inductively coupled plasma mass spectrometry as a detector. Baseline separation was achieved for AsIII, AsV, MMAV, DMAV, and AsB, allowing us to quantify all five species. Excellent agreement between the total arsenic levels and the sum of the speciated As levels was obtained.  相似文献   

3.
Arsenic species have been known to participate in a number of chemical and biological reactions, including oxidation-reduction reactions, acid-base reactions, covalent interactions, and methylation-demethylation reactions because of the element's multiple and interconvertible oxidation states. Little is known about the structure or bonding behavior between arsenic species and thiolcontaining biomolecules. Therefore, a better understanding of the bonding behavior and detailed information on the molecular structure for arsenic-thiol complexes is needed. As a result, we have investigated the interaction between arsenic species (arsenate (AsV), arsenite (AsIII), monomethylarsonic acid (MMAV), and dimethylarsinic acid (DMAV)) with biomolecules containing thiol groups (glutathione and cysteine) by electrospray ionization mass spectrometry (ESI-MS). These compounds were dissolved in methanol/water solution and introduced into the MS instrument in order to elucidate the direct bonding behavior of thiol group of biomolecules with arsenic species. In addition, further detailed structural information on this complex was obtained by collision-induced dissociation (CID) measurements.In each mass spectrum for mixture solutions between arsenic species and thiol compounds, various peaks such as protonated arsenic-thiol complexes, protonated noncomplexed thiol compounds, sodium bound cluster ions, and proton bound cluster ions were observed. In these mass spectra, the arsenic complexes were formed by interaction with thiol groups on the cysteine residues. These arsenic-thiol complexes produced a variety of fragment ions by cleavage of chemical bonds, and by interaction of other binding site on thiol compounds in tandem mass spectrometry experiments.  相似文献   

4.
There are no reports in scientific literature on arsenic species in human saliva after seaweed exposure. The present article reports for the first time the regular excretion patterns of arsenic in the saliva of volunteers with one-time ingestion of Chinese seaweed. Total arsenic and speciation analyses were carried out by high-performance liquid chromatography–inductively coupled plasma–mass spectrometry (HPLC-ICP-MS). Results show that the excretion time of total arsenic in saliva is a trifle earlier than that in urine, total arsenic in human saliva also shows a regular excretion pattern like that in urine within 72 h after exposure to seaweed. For speciation analysis, four species, including the major dimethylarsinic acid (DMA) species, were detected in urine prior to seaweed intake. Six species were detected in urine after seaweed ingestion, including DMA, methylarsonic acid (MMA), oxo-dimethylarsinoylethanol (oxo-DMAE), thio-dimethlyarsenoacetate (thio-DMAA), arsenite (AsIII) and arsenate (AsV). In saliva samples, three species were found before seaweed ingestion, with the major peak identified as AsIII. After consumption, the kinds of arsenic metabolites in saliva were less than those in urine. The major species was inorganic arsenic (iAs AsIII+AsV), followed by DMA, MMA and a trace amount of oxo-DMAE. Taken together, the present study suggests that saliva assay can be used as a potential tool for understanding the regular excretion pattern of total arsenic after seaweed ingestion. Whether or not it’s an efficient tool for assessing arsenic metabolites in humans exposed to seaweed requires further investigation.  相似文献   

5.
Humans are exposed to arsenic by inhalation and ingestion and are therefore may be affected by its toxicity. Arsenic may enter the human body by inhalation and ingestion. Cooking may alter the contents and chemical forms of arsenic. The determination of arsenic species in Lentinus edodes after microwave blanching was performed by high-performance liquid chromatography–inductively coupled plasma–mass spectrometry. Using a physiologically based extraction, the bioaccessibility of arsenic species in raw L. edodes and microwave blanching treated L. edodes were determined after the simulated gastrointestinal digestion. The arsenate (AsV), arsenite (AsIII), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine, and arsenocholine did not undergo decomposition and transformation in this study. Furthermore, the total contents of arsenic in L. edodes samples were in the range of 0.1378?±?0.0044–0.2347?±?0.0144?mg/kg. Approximately 3.38–43.27% were released from samples into the blanching water after various microwave blanching treatments. The oxidation of AsIII and demethylation of DMA and MMA were observed in L. edodes during digestion, increasing the likelihood of arsenic toxicity in the liver. The health risk for arsenic in L. edodes was decreased after microwave blanching because the potentially available arsenic in microwave blanching treatments L. edodes samples (83.78?±?0.9103%) were lower than those in raw L. edodes samples (88.33?±?0.7983%). L. edodes subjected to microwave blanching prior to consumption significantly decreased the total arsenic content and the risk of arsenic exposure to consumers (p?相似文献   

6.
Capillary electrophoresis coupled to inductively coupled plasma mass spectrometry was used in a speciation study on disodium monomethylarsonate (DS-MMAV) and its metabolites in horses, to which the drug was administered by intramuscular injection on five consecutive days at a single arsenic dosage of 270 mg day−1. Samples of urine, whole blood, plasma, and mane hair were analyzed before, during, and after drug administration. The data show that blood clearing and urinary excretion of MMA is a fast process following first-order kinetics with biological half-lives of about 38 h and 44 h for urine and plasma, respectively. In the time period of 9 days studied, the only metabolite detected in urine was dimethylarsinic acid (DMAV), which 4 days after the last drug administration accounted for up to 75% of the total excreted arsenic species. This shows, for the first time, that biomethylation of MMAV to DMAV is the principal metabolic pathway of this drug in horses. Although DS-MMAV was administered only during a short 5-day period, an up to six fold increase of arsenic could be measured in the newly grown mane hair.  相似文献   

7.
The application of ion-pair reversed phase chromatography (HPLC) and inductively coupled plasma mass spectrometry to the determination of six species of arsenic is described: arsenious acid (AsIII), arsenic acid (AsV), monomethylarsinic acid (MMA), dimethylarsinic acid (DMA), arsenocholine (AsC) and arsenobetaine (AsB) in marine biota and in natural fresh water. The coupling conditions of HPLC-ICP-MS are given and also the evaluation of the extraction procedure applied to determine these species in marine organisms. The limits of detection are between 6 and 25 g.l–1.  相似文献   

8.
Chicken is the most consumed meat in North America. Concentrations of arsenic in chicken range from μg kg−1 to mg kg−1. However, little is known about the speciation of arsenic in chicken meat. The objective of this research was to develop a method enabling determination of arsenic species in chicken breast muscle. We report here enzyme-enhanced extraction of arsenic species from chicken meat, separation using anion exchange chromatography (HPLC), and simultaneous detection with both inductively coupled plasma mass spectrometry (ICPMS) and electrospray ionization tandem mass spectrometry (ESIMS). We compared the extraction of arsenic species using several proteolytic enzymes: bromelain, papain, pepsin, proteinase K, and trypsin. With the use of papain-assisted extraction, 10 arsenic species were extracted and detected, as compared to 8 detectable arsenic species in the water/methanol extract. The overall extraction efficiency was also improved using a combination of ultrasonication and papain digestion, as compared to the conventional water/methanol extraction. Detection limits were in the range of 1.0–1.8 μg arsenic per kg chicken breast meat (dry weight) for seven arsenic species: arsenobetaine (AsB), inorganic arsenite (AsIII), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), inorganic arsenate (AsV), 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone), and N-acetyl-4-hydroxy-m-arsanilic acid (NAHAA). Analysis of breast meat samples from six chickens receiving feed containing Roxarsone showed the presence of (mean ± standard deviation μg kg−1) AsB (107 ± 4), AsIII (113 ± 7), AsV (7 ± 2), MMA (51 ± 5), DMA (64 ± 6), Roxarsone (18 ± 1), and four unidentified arsenic species (approximate concentration 1–10 μg kg−1).  相似文献   

9.
Arsenic speciation is a subject that is developing all the time both from improvements in analytical techniques and from increases in toxicological understanding. Despite speciation methods being widely developed, arsenic speciation is not routinely offered as an analysis in clinical laboratory. The work in this paper describes a simple routine method for arsenic speciation that could be easily implemented in clinical laboratories. The method described, a new, fast analytical method for arsenic speciation, is reported using micro-liquid chromatography hyphenated to an inductively coupled plasma mass spectrometer (μLC-ICP-MS). The method uses a low-pressure delivery six-port valve with a 5 cm anion exchange column, which allows a fully resolved separation of five arsenic species (arsenobetaine [AB], arsenite [As3+], arsenate [As5+], mono-methylarsonic acid [MMA5+] and dimethylarsinic acid [DMA5+]) in urine in just 6 min. This fast analytical method offers an arsenic speciation method that is feasible for a laboratory that does not have the capability for a dedicated arsenic speciation LC-ICP-MS instrument. The micro-LC system is small, easy to install and is fully integrated with the ICP-MS software. The results reported here are from urine samples from 65 workers in a semiconductor work providing a sample for their routine biological monitoring to assess workplace exposure. Control samples from 20 unexposed people were also determined. Results show that the semiconductor workers exhibit very low levels of arsenic in their urine samples, similar to the levels in the controls, and thus are not significantly exposed to arsenic. Care must be taken when interpreting urinary arsenic species results because it is not always possible to differentiate between dietary and other external sources of exposure.  相似文献   

10.
A novel pretreatment system and method for arsenic species continuous analysis of arsenite, arsenate, monomethylarsenate (MMA) and dimethylarsonate (DMA) in freshwater using liquid chromatography combined to hydride generation atomic fluorescence spectrometry (LC-HG-AFS) was designed. Arsenic species of As(III), As(V), MMA and DMA in freshwater samples can be well separated, and the analytical time using the developed method is shortened twice compared to the conventional analytical procedure. Besides, the signal of As(V) can be increased by about 50% and the sensitivity to As(V) has been enhanced. The common coexisting ions in freshwater samples have no interferences with arsenic speciation analysis. A sensitive, low cost and interference-free procedure was developed and successfully applied to arsenic speciation in freshwater with the recoveries of four arsenic species within 89.2–106.2%. LC-HG-AFS has good prospects for speciation analysis of trace and ultra trace elements allowing for hydride generation.  相似文献   

11.
Seven algae samples, five purchased from food stores and two reference algae (BCR 279 Sea Lettuce) were distributed as blind samples to 13 laboratories from which five labs attempted a full characterisation of the water-soluble fraction with respect to their arsenic species. The extraction efficiency is largely dependant on the algae and varied from 3% to 96%. Besides inorganic arsenic (mainly as As(V)) DMA(V) and, in particular, several arsenosugars were identified in all samples. From the five labs, three labs gave agreeable results in respect of the arsenic species identification and its quantification, although different chromatographic methods were used. Different Hijiki samples seem to contain largely different arsenic concentration (67–113 mg As/kg) which may also have an influence on the distribution of inorganic arsenic and arsenosugars.  相似文献   

12.
Ingested arsenic is known to be not only excreted by urine, but to be stored in sulphydryl-rich tissue like hair, nail or skin. We developed an extraction method for arsenic species from these tissues and studied the stability of different arsenic species during the extraction process. Inorganic and pentavalent methylated arsenic was found to be stable under the extraction conditions, whereas trivalent methylated arsenicals and the thio-analogue of DMAV (DMAS) showed reduced stability. The absorption ability of hair for these different species was studied as well. Inorganic arsenic is better absorbed by hair than monomethyl- or dimethyl-arsenicals, whereby the trivalent forms are taken up better than the pentavalent forms. Independent of which methylated arsenical was used for the incubation, the pentavalent form was always the dominant form after extraction. Hair and nail samples from humans suffering from chronic arsenic intoxication contained dominantly inorganic arsenic with small and strongly varying amounts of DMAV and MAV present. DMAS was only found in some nail sample extracts containing unusually high amounts of DMAV and is believed to be formed during the extraction process.  相似文献   

13.
Sensitivities for the measurement of four arsenic species, AsIII, AsV, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), in environmental waters and rice extracts by a new neutron activation analysis (NAA) method using pre-separation of the species by liquid chromatography were determined. A manual fraction collection was used to isolate the species, followed by instrumental neutron activation analysis procedures. The sensitivities determined for arsenic species in the samples varied from 1.21 to 1.47 ng per vial or about 30 μg·L−1 in sample solutions which translates to about 900 ng arsenic per gram of rice for our HPLC-NAA experiments.  相似文献   

14.
Arsenic speciation analysis in marine samples was performed using ion chromatography (IC) with inductively coupled plasma mass spectrometry (ICP‐MS) detection. The separation of eight arsenic species, viz. arsenite, monomethyl arsonic acid, dimethylarsinic acid, arsenate, arsenobetaine, tetramethylarsine oxide, arsenocholine and tetramethylarsonium ion was achieved on a Dionex AS4A (weaker anion exchange column) by using a nitric acid pH gradient eluent (pH 3.3 to 1.3). The entire separation was accomplished in 12 min. The detection limits for the eight arsenic species by IC–ICP‐MS were in the range 0.03–1.6 µ g l?1, based on 3σ of the blank response (n = 6). The repeatability and day‐to‐day reproducibility were calculated to be less than 10% (residual standard deviation) for all eight species. The method was validated by analyzing a certified reference material (DORM‐2, dogfish muscle) and then successfully applied to several marine samples, e.g. oyster, fish muscle, shrimp and marine algae. The low power microwave digestion was employed for the extraction of arsenic from seafood products. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
This paper describes an approach to the determination of arsenic species bonding with proteins or low-molecular peptides by separation of leaf proteins and protein precursors into three fractions and analysis of arsenic species associated to these fractions. Plants irrigated with arsenite contained not only arsenite but also arsenate and dimethylarsinate. In plants treated with arsenate, the major component was arsenite in the water-soluble fraction containing soluble protein and non-protein (F II) and in the acid-soluble non-protein fraction (F IV). Concentrations of 43 mg kg−1 (As(V)-treatment) and 18 mg kg−1 (As(III)-treatment) could be analyzed in the water-insoluble structure protein fraction F I (56 ± 15% of the total mass). Based on the concentration of arsenic species in all fractions, conclusions are drawn over the fixation of arsenic in the fraction of insoluble structure proteins, in the fraction of soluble cytosolic proteins as well as the fraction of amino acids.  相似文献   

16.
There is considerable evidence that toxicity and physiological behavior of arsenic depends on its chemical forms. Arsenic speciation became therefore the subject of increasing interest in recent years. A sensitive method for the determination of arsenic species has been developed. The proposed procedure involves the use of high-performance liquid chromatography and inductively coupled plasma mass spectrometry (HPLC-ICP-MS). Six arsenic compounds were separated by anion-exchange chromatography with isocratic elution using tartaric acid as mobile phase with an elution order: arsenocholine, arsenobetaine, dimethylarsinic acid, methylarsonic acid, arsenous acid and arsenic acid. The chromatographic parameters affecting the separation of the arsenic species were optimized. Analytical characterization of the method has been realized with standard solutions. The detection limits for six arsenic compounds were from 0.04 to 0.6 g/L as As element. The repeatability (expressed by R.S.D) was better than 7% for all investigated compounds. The HPLC-ICP-MS system was successfully applied to the determination of arsenic compounds in environmental and biological samples in g/L level.  相似文献   

17.
Chlorella vulgaris was cultivated in a growth medium containing arsenate concentration of <0.01, 10, 100 and 1000 mg l?1. Illumination was carried out in 12 h cycles for 5 days. The health status of the culture was monitored by continuous pH and dissolved oxygen (DO) readings. Destructive sampling was used for the determination of biomass, chlorophyll, total arsenic and arsenic species. The chlorophyll a content, the DO and pH cycles were not significantly different for the different arsenate concentrations in the culture. In contrast, biomass production was significantly (p < 0.05) increased for the arsenic(V) treatment at 1000 mg l?1 compared with 100 mg l?1. The arsenic concentration in the algae increased with the arsenate concentration in the culture. However, the bioconcentration factor decreased a hundred‐fold with increase of arsenate from the background level to 1000 mg l?1. The arsenic species were identified by using strong anion‐exchange high‐performance liquid chromatography–inductively coupled plasma mass spectrometry analysis after methanol/water (1 : 1) extraction. The majority (87–100%) of the extractable arsenic was still arsenate; arsenite was found to be between 1 and 6% of total extractable arsenic in the algae. In addition to dimethylarsinic acid, one unknown arsenical (almost co‐eluting with methylarsonic acid) and three different arsenosugars have been identified for the first time in C. vulgaris growing in a culture containing a mixture of antibiotics and believed to be axenic. The transformation to arsenosugars in the algae is not dependent on the arsenate concentration in the culture and varies between 0.2 and 5% of total accumulated arsenic. Although no microbiological tests for bacterial contamination were made, this study supports the hypothesis that algae, and not associated bacteria, produce the arsenosugars. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Arsenic-speciation analysis in marine samples was performed by high-pressure liquid chromatography (HPLC) with ICP–MS detection. Separation of eight arsenic species—AsIII, MMA, DMA, AsV, AB, TMAO, AC and TeMAs+—was achieved on a C18 column with isocratic elution (pH 3.0), under which conditions AsIII and MMA co-eluted. The entire separation was accomplished in 15 min. The HPLC–ICP–MS detection limits for the eight arsenic species were in the range 0.03–0.23 μg L−1 based on 3σ for the blank response (n=5). The precision was calculated to be 2.4–8.0% (RSD) for the eight species. The method was successfully applied to several marine samples, e.g. oysters, fish, shrimps, and marine algae. Low-power microwave digestion was employed for extraction of arsenic from seafood products; ultrasonic extraction was employed for the extraction of arsenic from seaweeds. Separation of arsenosugars was achieved on an anion-exchange column. Concentrations of arsenosugars 2, 3, and 4 in marine algae were in the range 0.18–9.59 μg g−1. This paper was presented at the European Winter Conference 2005  相似文献   

19.
The effects of light on arsenic accumulation of Thraustochytrium CHN‐1 were investigated. Thraustochytrium CHN‐1, when exposed to blue light from light‐emitting diodes (LEDs), accumulated arsenate added to its growth medium to a much greater extent than Thraustochytrium cells exposed to fluorescent or red light, or when cultured in the dark. Arsenic compounds in Thraustochytrium CHN‐1 were analyzed by high‐performance liquid chromatography, with an inductively coupled plasma mass spectrometer serving as an arsenic‐specific detector. Arsenate, arsenite, monomethylarsonic acid (MMAA), dimethylarsinic acid (DMAA) and arsenosugar were identified. The order of arsenic species in Thraustochytrium CHN‐1 was arsenic(V)> arsenic(III)> MMAA > DMAA at an arsenic concentration of 10 mg dm?3 in the medium in blue LED light. As it is known that blue light induces the synthesis of certain metabolites in plants and microorganisms, this indicates that the accumulation of arsenic is an active metabolic process. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Farzana Akter K  Chen Z  Smith L  Davey D  Naidu R 《Talanta》2005,68(2):406-415
The performance of capillary electrophoresis-ultraviolet detector (CE-UV), hydride generation-atomic absorption spectrometry (HG-AAS) and liquid chromatography-inductively coupled plasma mass spectrometry (LC-ICP-MS) have been compared for the speciation of arsenic (As) in groundwater samples. Two inorganic As species, arsenite (AsIII), arsenate (AsV) and one organo species dimethyl arsenic acid (DMA) were mainly considered for this study as these are known to be predominant in water. Under optimal analytical conditions, limits of detection (LD) ranging from 0.10 (AsIII, AsT) to 0.19 (DMA) μg/l for HG-AAS, 100 (AsIII, DMA) to 500 (AsV) μg/l for CE-UV and 0.1 (DMA, MMA) to 0.2 (AsIII, AsV) μg/l for LC-ICP-MS, allowed the determination of the above three species present in these samples. Results obtained by all the three methods are well correlated (r2 = 0.996*** for total As) with the precision of <5% R.S.D. except CE-UV. The effect of interfering ions (e.g. Fe2+, Fe3+, SO42− and Cl) commonly found in ground water on separation and estimation of As species were studied and corrected for. Spike recovery was tested and found to be 80-110% at 0.5 μg/l As standard except CE-UV where only 50% of the analyte was recovered. Comparison of these results shows that LC-ICP-MS is the best choice for routine analysis of As species in ground water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号