首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single phase perovskite-based rare earth cobaltates (Ln1−xSrxCoO3−δ) (Ln=La3+, Pr3+, Nd3+, Sm3+, Gd3+, Dy3+, Y3+, Ho3+, Er3+, Tm3+ and Yb3+; 0.67?x?0.9) have been synthesized at 1100°C under 1 atmosphere of oxygen. X-ray diffraction of phases containing the larger rare earth ions La3+, Pr3+ and Nd3+ reveals simple cubic structures; however electron diffraction shows orientational twinning of a local, tetragonal (I4/mmm; ap×ap×2ap) superstructure phase. Orientational twinning is also present for Ln1−xSrxCoO3−δ compounds containing rare earth ions smaller than Nd3+. These compounds show a modulated intermediate parent with a tetragonal superstructure (I4/mmm; 2ap×2ap×4ap). Thermogravimetric measurements have determined the overall oxygen content, and these phases show mixed valence (3+/4+) cobalt oxidation states with up to 50% Co(IV). X-ray diffraction data and Rietveld techniques have been used to refine the structures of each of these tetragonal superstructure phases (Ln=Sm3+-Yb3+). Coupled Ln/Sr and oxygen/vacancy ordering and associated structural relaxation are shown to be responsible for the observed superstructure.  相似文献   

2.
Apparent molar volumes (V 2,φ ) and heat capacities (C p2,φ ) of glycine in known concentrations (1.0, 2.0, 4.0, 6.0, and 8.0 mol⋅kg−1) of aqueous formamide (FM), acetamide (AM), and N,N-dimethylacetamide (DMA) solutions at T=298.15 K have been calculated from relative density and specific heat capacity measurements. These measurements were completed using a vibrating-tube flow densimeter and a Picker flow microcalorimeter, respectively. The concentration dependences of the apparent molar data have been used to calculate standard partial molar properties. The latter values have been combined with previously published standard partial molar volumes and heat capacities for glycine in water to calculate volumes and heat capacities associated with the transfer of glycine from water to the investigated aqueous amide solutions, D[`(V)]2,tro\Delta\overline{V}_{\mathrm{2,tr}}^{\mathrm{o}} and D[`(C)]p2,tro\Delta\overline{C}_{p\mathrm{2,tr}}^{\mathrm{o}} respectively. Calculated values for D[`(V)]2,tro\Delta\overline{V}_{\mathrm{2,tr}}^{\mathrm{o}} and D[`(C)]p2,tro\Delta\overline{C}_{p\mathrm{2,tr}}^{\mathrm{o}} are positive for all investigated concentrations of aqueous FM and AM solutions. However, values for D[`(C)]p2,tro\Delta\overline{C}_{p\mathrm{2,tr}}^{\mathrm{o}} associated with aqueous DMA solutions are found to be negative. The reported transfer properties increase with increasing co-solute (amide) concentration. This observation is discussed in terms of solute + co-solute interactions. The transfer properties have also been used to estimate interaction coefficients.  相似文献   

3.
Viscosity η, and density ρ, of binary liquid mixtures of vinyl acetate or benzyl acetate with o-xylene, m-xylene, p-xylene and ethyl benzene have been determined at (303.15 and 313.15) K for the entire composition range. From the experimental values excess molar volume and deviations in viscosity have been calculated. These excess quantities were fitted to the Redlich-Kister polynomial equation. The viscosity data have been correlated using the Grunberg-Nissan, Tamura and Kurata, Auslander, and Jouyban-Acree models.  相似文献   

4.
New perovskite oxide phases BaCe1 − x In x O3 − x/2 (x = 0.1–0.8) (space group Pbnm) have been synthesized. The unit cell volume of the resulting solid solutions monotonically decreases with an increase in the degree of substitution of indium for cerium due to the contraction of octahedra in perovskite blocks. The thermodynamic stability of the compound BaCe0.75In0.25O2.875 was studied by the solution calorimetry method, and barium cerates were shown to be thermodynamically stable with respect to binary oxides at room temperature. The structure of occupied and vacant states in BaCe1 − x In x O3 − x/2 was determined on the basis of X-ray emission, absorption, and photoelectron spectra, and the energy gap was estimated at ∼2 eV.  相似文献   

5.
Numerous protein–polyphenol interactions occur in biological and food domains particularly involving proline-rich proteins, which are representative of the intrinsically unstructured protein group (IUP). Noncovalent protein–ligand complexes are readily detected by electrospray ionization mass spectrometry (ESI-MS), which also gives access to ligand binding stoichiometry. Surprisingly, the study of interactions between polyphenolic molecules and proteins is still an area where ESI-MS has poorly benefited, whereas it has been extensively applied to the detection of noncovalent complexes. Electrospray ionization mass spectrometry has been applied to the detection and the characterization of the complexes formed between tannins and a human salivary proline-rich protein (PRP), namely IB5. The study of the complex stability was achieved by low-energy collision-induced dissociation (CID) measurements, which are commonly implemented using triple quadrupole, hybrid quadrupole time-of-flight, or ion trap instruments. Complexes composed of IB5 bound to a model polyphenol EgCG have been detected by ESI-MS and further analyzed by MS/MS. Mild ESI interface conditions allowed us to observe intact noncovalent PRP–tannin complexes with stoichiometries ranging from 1:1 to 1:5. Thus, ESI-MS shows its efficiency for (1) the study of PRP–tannin interactions, (2) the determination of stoichiometry, and (3) the study of complex stability. We were able to establish unambiguously both their stoichiometries and their overall subunit architecture via tandem mass spectrometry and solution disruption experiments. Our results prove that IB5·EgCG complexes are maintained intact in the gas phase.   相似文献   

6.
Systematic computational studies of stannylene derivatives SnX(2)/SnXY and XSnR/SnR(2)/RSnR' were carried out using density functional theory. The basis sets used for H, F, Cl, Br, C, Si, and Ge atoms are of double-ζ plus polarization quality with additional s- and p-type diffuse functions, denoted DZP++. For the iodine and tin atoms, the Stuttgart-Dresden basis sets, with relativistic small-core effective core potentials (ECP), are used. All geometries are fully optimized with three functionals (BHLYP, BLYP, and B3LYP). Harmonic vibrational wavenumber analyses are performed to evaluate zero-point energy corrections and to determine the nature of the stationary points located. Predicted are four types of neutral-anion separations, plus adiabatic ionization energies (E(IE)) and singlet-triplet energy gaps (ΔE(S-T)). The dependence of all three energetic properties upon choice of substituent is remarkably strong. The EA(ad(ZPVE)) values (eV) obtained with the B3LYP functional range from 0.70 eV [Sn(CH(3))(2)] to 2.36 eV [SnI(2)]. The computed E(IE) values lie between 7.33 eV [Sn(SnH(3))(2)] and 11.15 eV [SnF(2)], while the singlet-triplet splittings range from 0.60 eV [Sn(SnH(3))(2)] to 3.40 eV [SnF(2)]. The geometries and energetics compare satisfactorily with the few available experiments, while most of these species are investigated for the first time. Some unusual structures are encountered for the SnXI(+) (X = F, Cl, and Br) cations. The structural parameters and energetics are discussed and compared with the carbene, silylene, and germylene analogues.  相似文献   

7.
The equilibrium geometric parameters and energetic and spectroscopic characteristics of low-lying conformers for several series of model cage-substituted (mixed) borane, alane, and gallane closo-dianions M i M′12 − i H122−(M, M′ = B, Al, Ga), as well as of “bare” gallium-aluminum anions Ga i Al12−i with i = 0–12, were calculated within the B3LYP approximation of the density functional theory using 6–31G* and 6–311+G** basis sets. Differences in structure and stability between alanoborane clusters of similar composition are revealed. In clusters where the M and M’ heteroatoms are close in size and electronegativity (in gallonoalanes and gallium-aluminum anions), successive substitutions of M′ for M are accompanied by small energy changes and occur quasi-stochastically in different positions of the cage. When the substituents are significantly different (in alanoboranes), mixed clusters are unstable against disproportionation into homonuclear “predecessors” M12H122− and M′12H122−, and the most favorable M i M′12 − i H122− structures among them are those in which M i M′12 − i the cages are subdivided into homonuclear “subclusters” M i and M′t′12−i with a maximal number of homonuclear bonds (M-M and M′-M′) and a minimal number of heteronuclear bonds (M-M′).  相似文献   

8.
Methyl 2-(thiazol-2-ylcarbamoyl)acetate was synthesized and used as starting material. It was treated with hydrazine hydrate to afford the hydrazide, which was reacted with nitromethane and formaldehyde to give the saturated nitropyrimidine. The hydrazide was reacted with phenyl isothiocyanate to afford the thiosemicarbazide, which was cyclized with ethyl bromoacetate, sodium hydroxide, or sulfuric acid to afford N-phenylthiazolidinone, N-phenyltriazole, and thiadiazolyl derivatives. The methyl 2-(thiazol-2-ylcarbamoyl)acetate was coupled with diazonium salts of aniline, 4-chloroaniline, 4-bromoaniline, or 4-aminobenzenesulfonamide to afford the carbamoyl acetates, which were reacted with 2-aminobenzimidazole, 1,2,4,5-tetrachlorophthalic anhydride, and hydrazine hydrate to afford the corresponding thiazolylmalonamide, tetrachloroisoindolylimide, and tri-azole derivatives. Schiff bases and imides are newly synthesized candidates obtained via simple condensation of the hydrazide with aldehydes, 2,3-pyridinedicarboxylic anhydride, or 1,8-naphthalenedicarboxylic anhydride. The pharmacological screening showed that many of these compounds have good antihypertensive α-blocking activity and low toxicity.  相似文献   

9.
The surface active and aggregation behavior of ionic liquids of type [C n mim][X] (1-alkyl-3-methylimidazolium (mim) halides), where n = 4, 6, 8 and [X] = Cl, Br and I was investigated by using three techniques: surface tension, 1H nuclear magnetic resonance (NMR) spectroscopy, small-angle neutron scattering (SANS). A series of parameters including critical aggregation concentrations (CAC), surface active parameters and thermodynamic parameters of aggregation were calculated. The 1H NMR chemical shifts and SANS measurements reveal no evidence of aggregates for the short-chain 1-butylmim halides in water and however small oblate ellipsoidal shaped aggregates are formed by ionic liquids with 1-hexyl and 1-octyl chains. Analysis of SANS data analysis at higher concentrations of [C8mim][Cl] showed that the microstructures consist of cubically packed molecules probably through ππ and hydrogen bond interactions.  相似文献   

10.

Abstract  

A green-colored V(III) compound, imidazolium hexafluorovanadium(III), [C3H5N2)]3[VF6], has been prepared and characterized. The geometric and electronic structure, together with charge-transfer, optical, and bonding properties, were thoroughly investigated by X-ray crystallography, density functional theory (DFT), and time-dependent density functional theory (TDDFT) calculations. The low-energy charge-transfer bands responsible for its green color may be theoretically assigned to a F(2p) → V(4p) ligand-to-metal charge-transfer transition. The ligand-field charge-transfer bands (d → d bands) occur at a lower energy region; they are too weak and will be obscured by the quite intense ligand-to-metal bands in the optical spectrum. Partial density of states analysis clearly shows that the nature of metal–ligand interactions in [VF6]3− is mainly ionic.  相似文献   

11.
The PtCl2-catalyzed cyclization reaction of ortho-alkynylphenyl acetals 1 in the presence of COD (1,5-cyclooctadiene) produces 3-(α-alkoxyalkyl)benzofurans 2 in good to high yields. For example, the reaction of acetaldehyde ethyl 2-(1-octynyl)phenyl acetal (1a), acetaldehyde ethyl 2-(cyclohexylethynyl)phenyl acetal (1c), and acetaldehyde ethyl 2-(phenylethynyl)phenyl acetal (1f) in the presence of 2 mol % of platinum(II) chloride and 8 mol % of 1,5-cycloocatadiene in toluene at 30 °C gave the corresponding 2,3-disubstituted benzofurans 2a, 2c, and 2f in 91, 94, and 88% yields, respectively. Moreover, the reaction of N-methoxymethyl-2-alkynylanilines 3 was catalyzed by PdBr2, affording the corresponding 2,3-disubstituted indoles 4 in moderate yields. For example, the reaction of N-methoxymethyl-2-(1-pentynyl)-N-tosylaniline (3a) and N-methoxymethyl-2-(phenylethynyl)-N-tosylaniline (3b) in the presence of 10 mol % of PdBr2 in toluene at 80 °C gave 3-methoxymethyl-2-propyl-1-tosylindole (4a) and 3-methoxymethyl-2-phenyl-1-tosylindole (4b) in 33 and 33% yields, respectively.  相似文献   

12.
This work reports on liquid–liquid equilibria in the system 1-butanol, oleic acid, water and n-heptane used for biphasic, lipase catalysed esterifications. The literature was studied on the mutual solubility in binary systems of water and each of the organic components. Experimental results were obtained on the composition of the coexisting phases of a series of ternary and quaternary mixtures of the components at 301, 308 and 313 K. The data were correlated successfully with the UNIQUAC model that was extended with ternary interaction parameters.  相似文献   

13.
We have conducted a systematic 57Fe Mössbauer study on BaR(Cu0.5Fe0.5)2O5+δ double perovskites with various oxygen contents and rare-earth elements (R=Lu, Yb, Y, Eu, Sm, Nd, and Pr). In samples based on R=Lu, Yb, Y, Eu, Sm the oxygen content remained at δ≈0, upon reductive or oxidative heat treatments under normal pressure. The larger rare-earth elements, i.e. Nd or Pr, readily allowed for continuous oxygen content tuning up to δ≈0.3. By employing high-pressure heat treatments higher oxygen contents were achieved for all samples. The Néel temperature of the samples was found to decrease with increasing amounts of oxygen entering the lattice. In high-pressure oxygenated samples the decrease was less severe indicating that despite the incorporation of oxygen a large amount of Fe still remains in the high-spin trivalent state. By using charge-neutrality arguments together with the relative intensities of the Mössbauer spectral components the average valences of Fe and Cu were obtained. Oxygenation under normal pressure led to a corresponding increase of the valence of Fe, while Cu remained divalent. Upon high-pressure heat treatment equal amounts of Fe3+ and Cu2+ were found to be oxidized to Fe5+ and Cu3+, respectively.  相似文献   

14.
15.
CdVO3−δ and solid solutions of Cd1−xNaxVO3 with the GdFeO3-type perovskite structure were prepared using a high-pressure (6 GPa) and high-temperature technique. No significant oxygen and cation deficiency was found in CdVO3. Cd1−xNaxVO3 are formed in the compositional range of 0?x?0.2. CdVO3 and Cd1−xNaxVO3 demonstrate metallic conductivity and Pauli paramagnetism between 2 and 300 K. A large electronic contribution to the specific heat (γ=13.4 and ) for CdVO3 and Cd0.8Na0.2VO3, respectively) was observed at low temperatures due to the strongly correlated electrons. Crystal structures of CdVO3 and Cd0.8Na0.2VO3 were refined by X-ray powder diffraction: space group Pnma; Z=4; , , and for CdVO3 and , , and for Cd0.8Na0.2VO3.  相似文献   

16.
The possibility of high TC superconductivity is suggested for lithium- and magnesium-doped icosahedral boron crystals, α- and β-rhombohedral boron. The doping of these elements was attempted by a vapor diffusion processing. Both lithium and magnesium are hardly doped into the α-rhombohedral boron, although small amounts of metallic parts are found in the sample. In only one Li-doped sample, the metallic part contained 0.02 vol% of the superconductive phase (TC∼36 K). Magnesium was successfully doped into β-rhombohedral boron homogeneously up to 4 at% (Mg4.1B105), although considerable amount of impurity silicon was introduced together with magnesium. The structures of the doped samples were analyzed assuming co-doping of magnesium and silicon. The relation between the site occupancies of the dopants and the lattice expansion is discussed. The estimation of the density of states near the Fermi energy by EELS and magnetic susceptibility measurements suggested a metal transition of the β-rhombohedral boron by the doping of magnesium and silicon. The relation between the metal transition and the intrinsic acceptor level is also discussed.  相似文献   

17.
A series of new p-tert-butyl thiacalix[4]arenes with o-, m-, p-amido and o-, m-, p-(amidomethyl)pyridine substituents at the lower rim in cone, partial cone, and 1,3-alternate conformations were synthesized. The ability of the obtained compounds to recognize the α-hydroxy (glycolic, tartaric) and dicarboxylic (oxalic, malonic, succinic, fumaric, and maleic) acids was investigated by UV-vis spectroscopy. Also, the efficiency and selectivity of binding, the association constants log Ka (102 to 107 M−1) and the stoichiometry were determined for the complexes of p-tert-butyl thiacalix[4]arenes with the acids. The receptors based on p-tert-butyl thiacalix[4]arenes with (amidomethyl)pyridine substitutes are most efficient in complexation in many cases.  相似文献   

18.
The ground state and protonated state (quaternized salt) vibrational spectra (200–1800 cm−1) of the title amines are reported for various ring and/or methyl deuterated derivatives. Complete assignments are proposed and compared to those established for the parent hydrocarbons, benzene and biphenyl, and for the parent primary amines, aniline, p-phenylenediamine and benzidine. The electronic distribution, N(n)→ring(π) charge-transfer character and inductive effects are characterized from a vibrational point of view. Finally changes in the vibrational and electronic conformation upon protonation of the nitrogen atom are discussed. These results provide a fundamental basis for the vibrational investigation of excited states and reactive transients of aromatic amines.  相似文献   

19.
Synthesis of fully conjugated cyclophanes containing large-size polycyclic aromatics is challenging. Now, three benzidine-linked, hexa-peri-hexabenzocoronene (superbenzene)-based ortho-, para-, and meta-cyclophanes are synthesized through intermolecular Yamamoto coupling reaction of structurally pre-organized precursors. Subsequent oxidative dehydrogenation gave the corresponding quinoidal benzidine-linked cyclophanes. Their geometries were confirmed by X-ray crystallographic analysis and their electronic properties were investigated by electronic absorption, cyclic voltammetry, and DFT calculations. The quinoidal benzidine-linked cyclophanes show thermally populated paramagnetic activity with a relatively large singlet-triplet energy gap. Two enantiomers for the ortho-cyclophanes ( 1-NH and 1-N ) were isolated and their chiral figure-of-eight macrocyclic structures were identified. The cage-like cyclophanes 2-NH and 3-NH with concave surface can selectively encapsulate fullerene C70.  相似文献   

20.
The preference for icosahedral B12 amongst polyhedral boranes and elemental boron is explained based on an optimization of overlap model. The ingenious ways in which elemental boron and boron-rich solids achieve icosahedron-related structures are explained by a fragment approach. The Jemmis mno rules are used to get the electron requirements. The extra occupancies and vacancies in β-rhombohedral structures are shown to be inevitable results of electron requirements. The detailed understanding of the structure suggests ways of doping β-rhombohedral boron with metals for desired properties. Theoretical studies of model β-rhombohedral solids with metal dopings provide support for the analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号