共查询到20条相似文献,搜索用时 15 毫秒
1.
Johann C Elsenberg S Roesch U Rambaldi DC Zattoni A Reschiglian P 《Journal of chromatography. A》2011,1218(27):4126-4131
A new system design and setup are proposed for the combined use of asymmetrical flow field-flow fractionation (AF4) and hollow-fiber flow field-flow fractionation (HF5) within the same instrumentation. To this purpose, three innovations are presented: (a) a new flow control scheme where focusing flow rates are measured in real time allowing to adjust the flow rate ratio as desired; (b) a new HF5 channel design consisting of two sets of ferrule, gasket and cap nut used to mount the fiber inside a tube. This design provides a mechanism for effective and straightforward sealing of the fiber; (c) a new AF4 channel design with only two fluid connections on the upper plate. Only one pump is needed to deliver the necessary flow rates. In the focusing/relaxation step the two parts of the focusing flow and a bypass flow flushing the detectors are created with two splits of the flow from the pump. In the elution mode the cross-flow is measured and controlled with a flow controller device. This leads to reduced pressure pulsations in the channel and improves signal to noise ratio in the detectors. Experimental results of the separation of bovine serum albumin (BSA) and of a mix of four proteins demonstrate a significant improvement in the HF5 separation performance, in terms of efficiency, resolution, and run-to-run reproducibility compared to what has been reported in the literature. Separation performance in HF5 mode is shown to be comparable to the performance in AF4 mode using a channel with two connections in the upper plate. 相似文献
2.
Summary Potential barrier gravitational field-flow fractionation (PBGFFF) is a new technique for the separation and characterization of colloidal materials. It consists in changing the potential energy of interaction between the colloidal particles and the channel wall by varying the solution ionic strength or the Hamaker constant and the surface potential of the particles. In this work the PBGFFF technique based on the particles' surface potential variation, by varying the pH, is presented. Polydisperse colloidal particles of the sulphide CuZnS (with molar ratio Cu/Zn-10/90) are used as a model sample. Comparison of the results obtained by PBGFFF with those given by conventional gravitational fieldflow fractionation and laser counter measurements, shows that one could use PBGFFF not only for the separation and characterization of colloidal materials, but also for the investigation of the interactions between colloids and solid surfaces. 相似文献
3.
Summary Several types of membrane have been tested for use in organic solvent flow field-flow fractionation in an asymmetric channel. The practical problems most commonly encountered were leakage of air and solvent through the support layer on which the membranes are cast, and unequal swelling of the membrane and the support layer in the organic solvent, leading to ridging of the membrane in the channel. Three types of membrane were found suitable for the separation of polystyrene standards with tetrahydrofuran as solvent. The best results were obtained with a fluoropolymer membrane. Fair agreement was found between theory and practice for the dependence of retention times on the relative molecular mass of the standards and on the flow regime. Use of scanning electron microscopy revealed that for a number of the membrane materials some pores were much larger than expected on the basis of the indicated molecular weight cut-off. Whereas these materials could not be used for the fractionation of soluble polymers, they could be applied with some success to the separation of solid latex and silica particles. A PTFE membrane could be used for the separation of latexes and silica particles suspended in acetonitrile as carrier liquid. In general, however, the retention times of these particles were shorter than theoretically predicted. 相似文献
4.
Sanz R Puignou L Galceran MT Reschiglian P Zattoni A Melucci D 《Analytical and bioanalytical chemistry》2004,379(7-8):1068-1075
This work continues the project on field-flow fractionation characterisation of whole wine-making yeast cells reported in previous papers. When yeast cells are fractionated by gravitational field-flow fractionation and cell sizing of the collected fractions is achieved by the electrosensing zone technique (Coulter counter), it is shown that yeast cell retention depends on differences between physical indexes of yeast cells other than size. Scanning electron microscopy on collected fractions actually shows co-elution of yeast cells of different size and shape. Otherwise, the observed agreement between the particle size distribution analysis obtained by means of the Coulter counter and by flow field-flow fractionation, which employs a second mobile phase flow as applied field instead of Earths gravity, indicates that yeast cell density can play a major role in the gravitational field-flow fractionation retention mechanism of yeast cells, in which flow field-flow fractionation retention is independent of particle density. Flow field-flow fractionation is then coupled off-line to gravitational field-flow fractionation for more accurate characterisation of the doubly-fractionated cells. Coupling gravitational and flow field-flow fractionation eventually furnishes more information on the multipolydispersity indexes of yeast cells, in particular on their shape and density polydispersity. 相似文献
5.
M. E. Schimpf M. P. Petteys 《Colloids and surfaces. A, Physicochemical and engineering aspects》1997,120(1-3):87-100
Several humic materials are characterized by flow field-flow fractionation, including humic acids, a fulvic acid, and aqueous leachates from compost. Hydrophilic and hydrophobic fractions of a compost leachate were also examined. After characterizing molecular weight distributions, the effect of pH and salt concentration on hydrodynamic size is studied. In general, the hydrodynamic size decreases as the pH is lowered. However, humic acids form large aggregates below pH 5. Small amounts of sodium chloride have little effect on the size distributions. In contrast, a little calcium chloride reduces the hydrodynamic size of individual molecules while inducing the formation of oligomers, although severe aggregation is absent. With further additions of calcium chloride, the decrease in hydrodynamic size continues but oligomer formation subsides. Precise characterization of the unaggregated material is hindered by sample penetration through the channel membrane. 相似文献
6.
In this article, a simple experimental approach to improve lipoprotein separation and detection in flow field-flow fractionation (FlFFF) is detailed. Lipoproteins are globular particles composed of lipids and proteins in blood serum and their roles include transferring fats and cholesterols through blood vessels throughout the body. Especially, presence of small, dense low-density lipoproteins (LDL) is associated with cardiovascular risk. Two experimental approaches were explored in this study: an increase in the reproducibility of LDL particle separation by implementing a guard channel prior to an asymmetrical FlFFF (AFlFFF) channel in order to deplete small molecular weight serum proteins and reducing the required injection volume of a serum sample by implementing fluorescence detection. The guard channel was made of a simple hollow fiber module so that the serum sample can be washed with the help of radial flow prior to injection into the AFlFFF channel. The channel was tested with protein standards and serum samples to ensure precision of the retention time and the protein recovery rate. A fluorescent phospholipid dye was utilized to label lipoprotein particles before separation for fluorescence detection, which resulted in a reduction of the required injection volume of serum. 相似文献
7.
Elution time measurements of colloidal particles injected in a symmetrical flow field-flow fractionation (flow FFF) system when the inlet and outlet cross-flow connections are closed have been performed. This no-field method has been proposed earlier for void time (and void volume) determination in flow FFF Giddings et al. (1977). The elution times observed were much larger than expected on the basis of the channel geometrical volume and the flow rate. In order to explain these discrepancies, a flow model allowing the carrier liquid to flow through the porous walls toward the reservoirs located behind the porous elements and along these reservoirs was developed. The ratio between the observed elution time and expected one is found to depend only on a parameter which is a function of the effective permeability and thickness of the porous elements and of the channel thickness and length. The permeabilities of the frits used in the system were measured. Their values lead to predicted elution times in reasonable agreement with experimental ones, taking into account likely membrane protrusion inside the channel on system assembly. They comfort the basic feature of the flow model, in the no-field case. The carrier liquid mostly bypasses the channel to flow along the system mainly in the reservoir. It flows through the porous walls toward the reservoirs near channel inlet and again through the porous walls from the reservoirs to the channel near channel outlet before exiting the system. In order to estimate the extent of this bypassing process, it is desirable that the hydrodynamic characteristics of the permeable elements (permeability and thickness) are provided by flow FFF manufacturers. The model applies to symmetrical as well as asymmetrical flow FFF systems. 相似文献
8.
Bouby M Geckeis H Manh TN Yun JI Dardenne K Schäfer T Walther C Kim JI 《Journal of chromatography. A》2004,1040(1):97-104
The combination of asymmetrical flow field-flow fractionation (AsFlFFF) with the laser-induced breakdown detection (LIBD) is presented as a powerful tool for the determination of colloid size distribution at trace particle concentrations. Detection limits (D1) of 1, 4, and 20 microg/L have been determined for a mixture of polystyrene reference particles with 20, 50, and 100 nm in size, respectively. This corresponds to injected masses of 1, 4, and 20 pg, which is lower than found in a previous study with the symmetrical FlFFF (SyFlFFF). The improvement is mainly due to the lower colloid background discharged from the AsFlFFF channel. The combined method of AsFlFFF-LIBD is then applied to the analysis of iron oxi/hydroxide colloids being considered as potential carriers for the radionuclide migration from a nuclear waste repository. Our LIBD arrangement is less sensitive for iron colloid detection as compared to reference polystyrene particles which results in a detection limit of approximately 240 microg/L FeOOH for the AsFlFFF-LIBD analysis. This is superior to the detection via UV-Vis absorbance and comparable to ICP-MS detection. Size information (mean size 11-18 nm) for different iron oxi/hydroxide colloids supplied by the present method is comparable to that obtained by sequential ultrafiltration and dynamic light scattering. A combined on-line ICP-MS detection is used to gain insight into the colloid-borne main and trace elements. 相似文献
9.
Summary Model methylmethacrylate-styrene, linear di-block, copolymers were used to investigate the respective influnnces of temperature,
of molar mass and of chemical composition on their Soret coefficient, sT, by means of thermal field-flow fractionation (thermal FFF) in toluene and in THF. A recently developed thermal FFF retention
model, which takes into account the variation of the basic FFF parameter λ with temperature, is applied to investigate the
dependence of the Soret coefficient on temperature. It is found that the coefficient decreases approximately linearly with
increasing temperature. At constant chemical composition and temperature, sT exhibits a power law dependence on molar mass with an exponent é ? 0.55. At constant molar mass and temperature, sT decreases monotonously with increasing weight percent styrene in the copolymer composition. At 300 K, sT values are slightly larger in THF than in toluene.
Presented at the 21st ISC held in Stuttgart, Germany, 15th–20th September, 1996. 相似文献
10.
Summary The reversibility of adsorption of colloidal particles on the channel wall in Sedimentation Field-Flow Fractionation (SFFF), which is based on the variation of the ionic strength of the carrier solution, suggests a new method, for the separation and characterization of colloidal materials. This new method has been called Potential Barrier Field Flow Fractionation (PBFFF). 相似文献
11.
Ji Hye Kwon Euijin Hwang Il-Hwan Cho Myeong Hee Moon 《Analytical and bioanalytical chemistry》2009,395(2):519-525
Thermal depolymerization of ultrahigh-molecular-weight (UHMW) sodium hyaluronate (NaHA) was studied systematically by using
frit-inlet asymmetrical flow field-flow fractionation/multiangle light scattering/differential refractive index (FI-AFlFFF/MALS/DRI).
FI-AFlFFF was utilized for the size separation of NaHA samples which had been thermally degraded for varied treatment times,
followed by light-scattering detection to determine MW and structural information of degraded NaHA products. Analysis of NaHA
products showed time-dependent depolymerization of raw molecules into smaller-MW components, as well as unfolding of compact
structures of UHMW NaHA. To determine whether the observed decrease in MW of sodium hyaluronate originated from the chain
degradation of UHMW molecules or from dissociation of entangled complex particles that may have been formed by intermolecular
association, narrow size fractions (1 × 107–6 × 107 and >6 × 107 MW) of NaHA molecules were collected during FlFFF separation and followed by thermal treatment. Subsequent FI-AFlFFF/MALS
analysis of collected fractions after thermal treatment suggested that the ultrahigh-MW region (>107 Da) of NaHA is likely to result from supermolecular structures formed by aggregation of large molecules. 相似文献
12.
Flow field-flow fractionation (flow FFF), a separation technique for particles and macromolecules, has been used to separate carbon nanotubes (CNT). The carbon nanotube ropes that were purified from a raw carbon nanotube mixture by acidic reflux followed by cross-flow filtration using a hollow fiber module were cut into shorter lengths by sonication under a concentrated acid mixture. The cut carbon nanotubes were separated by using a modified flow FFF channel system, frit inlet asymmetrical flow FFF (FI AFIFFF) channel, which was useful in the continuous flow operation during injection and separation. Carbon nanotubes, before and after the cutting process, were clearly distinguished by their retention profiles. The narrow volume fractions of CNT collected during flow FFF runs were confirmed by field emission scanning electron microscopy and Raman spectroscopy. Experimentally, it was found that retention of carbon nanotubes in flow FFF was dependent on the use of surfactant for CNT dispersion and for the carrier solution in flow FFF. In this work, the use of flow FFF for the size differentiation of carbon nanotubes in the process of preparation or purification was demonstrated. 相似文献
13.
Summary Potential-barrier field-flow fractionation, which is a combination of potential-barrier chromatography and sedimentation field-flow
fractionation, is shown to be a convenient and accurate method for the concentration and analysis (separation and characterization)
ofdilute colloidal samples. Two sizes (0.158 and 0.271 μm) of haematite (α-Fe2O3) monodisperse colloidal samples diluted in volumes of up to 20 cm3 are used as model colloids. The particle diameters found by the present concentration procedure under various experimental
conditions are in good agreement with those determined by conventional sedimentation field-flow fractionation, in which a
small concentrated sample volume was injected directly into the column. 相似文献
14.
A simple gravitational field-flow fractionation (GrFFF) system was used for size separation of micron sized silica particles coated with hydrous iron oxide (geothite). The amount of iron on the particles was monitored either on-line by reverse-flow injection analysis (r-FIA) with chemiluminescence detection using luminol or off-line by electrothermal atomic absorption spectrophotometry (ETAAS). The combination of GrFFF with reverse FIA or with ETAAS has been demonstrated to be a cost-effective tool for size based iron speciation of particles. 相似文献
15.
Gebrenegus Yohannes Susanne K. Wiedmer Matti Jussila Marja-Liisa Riekkola 《Analytica chimica acta》2010,675(2):191-2561
The use of asymmetrical flow field-flow fractionation (AsFlFFF) in the study of heat-induced aggregation of proteins is demonstrated with bovine serum albumin (BSA) as a model analyte. The hydrodynamic diameter (dh), the molar mass of heat-induced aggregates, and the radius of gyration (Rg) were calculated in order to get more detailed understanding of the conformational changes of BSA upon heating. The hydrodynamic diameter of native BSA at ambient temperature was ∼7 nm. The particle size was relatively stable up to 60 °C; above 63 °C, however, BSA underwent aggregation (growth of hydrodynamic diameter). The hydrodynamic diameters of the aggregated particles, heated to 80 °C, ranged from 15 to 149 nm depending on the BSA concentration, duration of incubation, and the ionic strength of the solvent. Heating of BSA in the presence of sodium dodecyl sulfate (1.7 or 17 mM) did not lead to aggregation. The heat-induced aggregates were characterized in terms of their molar mass and particle size together with their respective distributions with a hyphenated technique consisting of an asymmetrical field-flow fractionation device and a multi-angle light scattering detector and a UV-detector. The carrier solution comprised 8.5 mM phosphate and 150 mM sodium chloride at pH 7.4. The weight-average molar mass (Mw) of native BSA at ambient temperature is 6.6 × 104 g mol−1. Incubation of solutions with BSA concentrations of 1.0 and 2.5 mg mL−1 at 80 °C for 1 h resulted in aggregates with Mw 1.2 × 106 and 1.9 × 106 g mol−1, respectively. The average radius of gyration and the average hydrodynamic radius of the heat-induced aggregate samples were calculated and compared to the values obtained from the size distributions measured by AsFlFFF. For comparison static light scattering measurements were carried out and the corresponding average molar mass distributions of solutions with BSA concentrations of 1.0 and 2.5 mg mL−1 at 80 °C for 1 h gave aggregates with Mw 1.7 × 106 and 3.5 × 106 g mol−1, respectively. 相似文献
16.
Kang DY Kim MJ Kim ST Oh KS Yuk SH Lee S 《Analytical and bioanalytical chemistry》2008,390(8):2183-2188
Asymmetrical flow field-flow fractionation (AsFlFFF) was used to determine the size distribution of drug-loaded core/shell
nanoparticles which have a lipid core of lecithin and a polymeric shell of a Pluronic. AsFlFFF provided separation of the
drug-loaded core/shell nanoparticles from smaller coreless polymeric micelles, thus allowing accurate size analysis of the
drug-loaded nanoparticles without interference by the coreless micelles. It was found from AsFlFFF that the drug-loaded nanoparticles
have broad size distributions ranging from 100 to 600 nm in diameter. It was also found that, after the nanoparticles had
been stored for 70 days, they disappeared as a result of self-degradation. Being a separation technique, AsFlFFF seems to
be more useful than transmission electron microscopy or dynamic light scattering for size analysis of core/shell nanoparticles,
which have broad and bimodal size distributions.
Figure Separation by AsFlFFF 相似文献
17.
场流分离是生物分析领域一项成熟的技术,将流体与外场联合作用于待分离物质,利用分析物某些理化参数上的差异进行分离。非对称流场流是其重要的分支之一,所施加的外力场为垂直方向的液流,分离过程于开放型的通道中在某种组成的载液迁移推动下进行,主要根据分析物与垂直施加的第二维液流之间的相互作用完成分离。非对称流场流在蛋白质、蛋白质复合物、衍生纳米级/微米级粒子、亚细胞单元和聚合物等分离中的应用日益广泛,主要归功于其直接应用于生物样品时可进行无损分离,因此生物分析物如蛋白质可以在生物友好型的环境中完成分离而不改变其构型,也无需使用降解载液。分离设备便于保持无菌状态,分析物可在生物友好的环境中维持其自然状态。该文简要描述了场流分离原理并罗列出其在生物分析领域一些卓越的发展和应用。 相似文献
18.
基于非对称场流分离技术耦合多角度激光光散射检测器和示差折光检测器,建立了分离表征小米淀粉的方法。研究了进样量、交叉流流速、半衰期(t1/2)、载液离子强度和pH值对小米淀粉分离效果的影响;考察了该方法的重现性;探究了小米淀粉分子结构。结果表明,在进样体积为50 μL、进样质量浓度为0.50 g/L、交叉流流速为1.2 mL/min、t1/2=3 min、载液为10 mmol/L pH 7.00 NaNO3(含3 mmol/L NaN3)的条件下,小米淀粉分离效果最佳。该方法具有良好的重现性,得到的小米淀粉的回转半径相对标准偏差为3.4%、摩尔质量相对标准偏差为7.0%。 相似文献
19.
重力场流分离作为最简单的一种场流分离技术,常用于分离微米级颗粒。选择两种不同粒径(20 μ m和6 μ m)的聚苯乙烯(PS)颗粒作为样品,通过改变载液中叠氮化钠浓度、混合表面活性剂的比例及载液流速,利用自行设计生产的重力场流分离(gravitational flow field-flow fractionation, GrFFF)仪器,对颗粒混合样品进行分离,得到了相关谱图与数据,考察了这3种因素对分离效果(保留比(R)、塔板高度(H))的影响。结果表明:20 μ m PS颗粒的R值均大于6 μ m PS颗粒的R值,H值均小于6 μ m颗粒的H值;PS颗粒的R值与H值均随着载液中叠氮化钠浓度的增加而增加;但随着载液流速的增加,R值增加,H值减小。该研究为GrFFF系统的开发及应用提供了重要的参考价值。 相似文献
20.
Asymmetric flow field-flow fractionation (AF4) enables to analyse polymers with very high molar masses under mild conditions in comparison to size exclusion chromatography (SEC). Conventionally, membranes for AF4 are made from cellulose. Recently, a novel ceramic membrane has been developed which can withstand high temperatures above 130 °C and chlorinated organic solvents, thus making it possible to characterise semicrystalline polyolefins by HT-AF4. Two ceramic membranes and one cellulose membrane were compared with regard to their quality of molar mass separation and the loss of the polymer material through the pores. Separating polystyrene standards as model compounds at different cross-flow gradients the complex relationship between cross-flow velocity, separation efficiency, the molar mass and peak broadening could be elucidated in detail. Moreover, the dependence of signal quality and reproducibility on sample concentration and mass loading was investigated because the evaluation of the obtained fractograms substantially depends on the signal intensities. Finally, the performance of the whole system was tested at high temperature by separating PE reference materials of high molar mass. 相似文献