首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a simple solution based method for the gold (Au) metallization of DNA resulting in a Au nanowire network. Advantage of solution based approach is that it allows the removal of excess gold (Au+3) ions by extraction with tetraoctylammonium bromide (TOAB) in order to avoid non specific metallization. Further it has been shown that Au metallized DNA obtained in aqueous phase can be transferred to organic phase using hexadecyl aniline (HDA). Au metallized DNA has potential application in nanoscale devices.  相似文献   

2.
A chemometric approach was applied for the optimization of the extraction and separation of the antihypertensive drug eprosartan from human plasma samples. MultiSimplex program was used to optimize the HPLC-UV method due to the number of experimental and response variables to be studied. The measured responses were the corrected area, the separation of eprosartan chromatographic peak from plasma interferences peaks and the retention time of the analyte.The use of an Atlantis dC18, 100 mm × 3.9 mm i.d. chromatographic column with a 0.026% trifluoroacetic acid (TFA) in the organic phase and 0.031% TFA in the aqueous phase, an initial composition of 80% aqueous phase in the mobile phase, a stepness of acetonitrile of 3% during the gradient elution mode with a flow rate of 1.25 mL/min and a column temperature of 35 ± 0.2 °C allowed the separation of eprosartan and irbesartan used as internal standard from plasma endogenous compounds. In the solid phase extraction procedure, experimental design was used in order to achieve a maximum recovery percentage. Firstly, the significant variables were chosen by way of fractional factorial design; then, a central composite design was run to obtain the more adequate values of the significant variables. Thus, the extraction procedure for spiked human plasma samples was carried out using C8 cartridges, phosphate buffer pH 2 as conditioning agent, a drying step of 10 min, a washing step with methanol-phosphate buffer (20:80, v/v) and methanol as eluent liquid. The SPE-HPLC-UV developed method allowed the separation and quantitation of eprosartan from human plasma samples with an adequate resolution and a total analysis time of 1 h.  相似文献   

3.
This work concentrates on a chiral separation technology named biphasic recognition applied to resolution of α-cyclohexylmandelic acid enantiomers by high-speed counter-current chromatography (HSCCC). The biphasic chiral recognition HSCCC was performed by adding lipophilic (−)-2-ethylhexyl tartrate in the organic stationary phase and hydrophilic hydroxypropyl-β-cyclodextrin in the aqueous mobile phase, which preferentially recognized the (−)-enantiomer and (+)-enantiomer, respectively. The two-phase solvent system composed of n-hexane-methyl tert-butyl ether–water (9:1:10, v/v/v) with the above chiral selectors was selected according to the partition coefficient and separation factor of the target enantiomers. Important parameters involved in the chiral separation were investigated, namely the types of the chiral selectors (CS); the concentration of each chiral selector; pH of the mobile phase and the separation temperature. The mechanism involved in this biphasic recognition chiral separation by HSCCC was discussed. Langmuirian isotherm was employed to estimate the loading limits for a given value of chiral selectors. Under optimum separation conditions, 3.5–22.0 mg of α-cyclohexylmandelic acid racemate were separated using the analytical apparatus and 440 mg of racemate was separated using the preparative one. The purities of both of the fractions including (+)-enantiomer and (−)-enantiomer from the preparative CCC separation were over 99.5% determined by HPLC and enantiomeric excess reached 100% for the (±)-enantiomers. Recovery for the target compounds from the CCC fractions reached 85–88% yielding 186 mg of (+)-enantiomer and 190 mg of (−)-enantiomer. The overall experimental results show that the HSCCC separation of enantiomer based on biphasic recognition, in which only if the CSs involved will show affinity for opposite enantiomers of the analyte, is much more efficient than the traditional monophasic recognition chiral separation, since it utilizes the cooperation of both of lipophilic and hydrophilic chiral selectors.  相似文献   

4.
In this work, we have developed a novel hybrid two-dimensional counter-current chromatography and liquid chromatography (2D CCC × LC) system for the continuous purification of arctiin from crude extract of Arctium lappa. The first dimensional CCC column has been designed to fractionalize crude complex extract into pure arctiin effluent using a one-component organic/salt-containing system, and the second dimensional LC column has been packed with macroporous resin for on-line adsorption, desalination and desorption of arctiin which was effluent purified from the first CCC dimension. Thus, the crude arctiin mixture has been purified efficiently and conveniently by on-line CCC × LC in spite of the use of a salt-containing solvent system in CCC separation. As a result, high purity (more than 97%) of arctiin has been isolated by repeated injections both using the ethyl acetate–8% sodium chloride aqueous solution and butanol–1% sodium chloride aqueous solution. By contrast with the traditional CCC processes using multi-component organic/aqueous solvent systems, the present on-line CCC × LC process only used a one-component organic solvent and thus the solvent is easier to recover and regenerate. All of used solvents such as ethyl acetate, n-butanol and NaCl aqueous solution are low toxicity and environment-friendly. Moreover, the lower phase of salt-containing aqueous solution used as mobile phase, only contained minor organic solvent, which will save much organic solvent in continuous separation. In summary, our results indicated that the on-line hybrid 2D CCC × LC system using one-component organic/salt-containing aqueous solution is very promising and powerful tool for high-throughput purification of arctiin from fruits of A. lappa.  相似文献   

5.
We demonstrate the phase transfer of silver nanoparticles synthesized in an aqueous medium into hexane containing the cationic surfactant octadecylamine (ODA). During vigorous shaking of the biphasic mixture, rapid phase transfer of the silver nanoparticles into the organic phase was observed. The phase transfer of the silver nanoparticles arises due to coupling of the silver nanoparticles with the ODA molecules present in organic phase via either coordination bond formation or weak covalent interaction. This process renders the nanoparticles sufficiently hydrophobic and dispersible in the organic phase. The ODA-stabilized silver nanoparticles could be separated out from the organic phase in the form of a powder and are readily redispersible in different organic solvents. The nature of binding of the ODA molecules to the silver nanoparticle surface was characterized using UV-vis spectroscopy, thermogravimetry, transmission electron microscopy, nuclear magnetic resonance spectroscopy, X-ray photoemission spectroscopy, and Fourier transform infrared spectroscopy.  相似文献   

6.
The optimisation of a solid phase extraction procedure involves several variables whose influence has been widely studied. However, in most cases, only process variables are taken into account. In this work, the influence of those process variables together with the fact of using mixtures of solvents during the elution step of the solid phase extraction of four angiotensin II receptor antagonist drugs has been studied. Since the influence on the extraction efficiency of several process variables were simultaneously tested, a D-optimal design was constructed. The composition of the elution solvent (a mixture of methanol, acetonitrile, ethanol and acetone at different proportions from 0 to 100% each solvent), the percentage and pH of the buffer solution added to the urine samples at the beginning of the extraction procedure; the percentage of the organic component and the volume of the washing solution, the drying time and the volume of the elution solvent were the studied variables. The chromatographic separation was carried out by gradient elution mode with 0.026% trifluoroacetic acid (TFA) in the organic phase and 0.031% TFA in the aqueous phase using an Atlantis dC18, 100 mm × 3.9 mm I.D. chromatographic column at a flow rate of 1 mL/min and a column temperature of 35 ± 0.2 °C. For detection a diode array detector set at 232 nm was used. The extraction procedure for spiked human urine samples was developed using C8 cartridges, phosphate buffer pH 6.8 as conditioning agent, a drying step of 10 min, a washing step with methanol-phosphate buffer (20:80, v/v) and methanol as eluent. Recovery percentages obtained: 84% for eprosartan, 74% for telmisartan, 74% for irbesartan and 89% for valsartan allow the determination of these drugs concentration levels in urine.  相似文献   

7.
Yongchun Zhu  Jingjing Guan  Lu Cao  Jie Hao 《Talanta》2010,80(3):1234-1238
Electrochemical solid phase nano-extraction, a novel sample preparation technique, was used for the determination of trace iodide in iodised table salt based on the silver sulfate nanoparticle-modified carbon paste electrode. Electrochemical solid phase nano-extraction was realized in the exchange between the sulfate anion in nanoparticles and an iodide anion from aqueous solution. The released silver cation serves as the electrochemical probe for the determination of iodide. The extraction follows a Freundlich adsorption isotherm, and can be used in the detection of iodide in the concentration range 5.0 × 10−12-4.0 × 10−9 M. The amount of iodide in iodised table salt was determined as 0.875 ± 0.002 μg/g, which is about 2.5% of the addition amount of iodate with a relative deviation of 5.92% and a standard addition recovery of 90-110%. The large amounts of chloride and iodate did not interfere with the detection.  相似文献   

8.
Liquid–liquid–liquid microextraction (LLLME) with directly suspended droplet in high-performance liquid chromatography (HPLC) has been applied as a new, rapid and easy method for the determination of 3-nitroaniline in environmental water samples. The target compound was extracted from the aqueous sample solution (donor phase, pH 13) into an organic phase and then was back-extracted into a directly suspended droplet of an acidic aqueous solution (acceptor phase, pH 0.3). In this method, without using a microsyringe as supporting device, an aqueous large droplet is freely suspended at the top-center position of an immiscible organic solvent, which is laid over the aqueous sample solution while being agitated. Then, the droplet was withdrawn into the microsyringe and directly was injected into the HPLC system with UV detection at 227 nm. Up to 148-fold enrichment of the analyte could be obtained under the optimal conditions [i.e. donor phase: 0.1 M sodium hydroxide solution (4.5 mL); organic phase: o-xylene/1-octanol (90:10, v/v; 250 μL); acceptor phase: 0.5 M hydrochloric acid and 500 mM 18-crown-6 ether (6 μL); extraction time: 60 s; back-extraction time: 6 min and stirring rate: 600 rpm]. The limit of detection was 1 μg/L (n = 7) and the relative standard deviation (RSD, n = 5) was 4.9 at S/N = 3. The calibration graph was linear in the range of 5–1500 μg/L with r = 0.9983. All experiments were carried out at room temperature (22 ± 0.5 °C).  相似文献   

9.
Li H  Chen B  Zhang Z  Yao S 《Talanta》2004,63(3):659-665
A new focused microwave-assisted solvent extraction method using water as solvent has been developed for leaching geniposidic and chlorogenic acids from Eucommia ulmodies Oliv. The extraction procedures were optimized using a two indexes orthogonal experimental design and graphical analysis, by varying irradiation time, solvent volume, solvent composition and microwave power. The optimum extraction conditions were obtained: for geniposidic acid, 50% micorwave power, 40 s irradiation, and 80% (v/v) aqueous methanol as extraction solvent (20 ml g−1 sample); and for chlorogenic acid, 50% micorwave power, 30 s irradiation, and 20% aqueous methanol (20 ml g−1 sample). The composition of the extraction solvent was optimized and can be directly used as the mobile phase in the HPLC separation. Quantification of organic acids was done by HPLC at room temperature using Spherigel C18 chromatographic column (, i.d. 5 μm), the methanol:water:acetic acid (20:80:1.0, v/v) mobile phase and UV detection at 240 nm. The R.S.D. of the extraction process for geniposidic and chlorogenic acid were 3.8 and 4.1%, respectively.  相似文献   

10.
The determination of metallic nanoparticles in environmental samples requires sample pretreatment that ideally combines pre-concentration and species selectivity. With cloud point extraction (CPE) using the surfactant Triton X-114 we present a simple and cost effective separation technique that meets both criteria. Effective separation of ionic gold species and Au nanoparticles (Au-NPs) is achieved by using sodium thiosulphate as a complexing agent. The extraction efficiency for Au-NP ranged from 1.01 ± 0.06 (particle size 2 nm) to 0.52 ± 0.16 (particle size 150 nm). An enrichment factor of 80 and a low limit of detection of 5 ng L−1 is achieved using electrothermal atomic absorption spectrometry (ET-AAS) for quantification. TEM measurements showed that the particle size is not affected by the CPE process. Natural organic matter (NOM) is tolerated up to a concentration of 10 mg L−1. The precision of the method expressed as the standard deviation of 12 replicates at an Au-NP concentration of 100 ng L−1 is 9.5%. A relation between particle concentration and the extraction efficiency was not observed. Spiking experiments showed a recovery higher than 91% for environmental water samples.  相似文献   

11.
Isabel López 《Talanta》2010,82(2):594-599
A fast method for mercury extraction from biological samples based on the use of HCl leaching plus different enzymatic hydrolysis (with and without mercury complexing agents), and the use of focussed ultrasounds (2-mm microtip) is here proposed. Total mercury content in several biological samples was determined by FI-ICP-MS using a carrier solution consisting of 0.1% (v/v) HCl, 0.1% (v/v) 2-mercaptoethanol, to avoid memory effect, and 0.15% (w/v) KCl. For mercury speciation a RP18 chromatographic column coupled to ICP-MS was used. A mobile phase consisting of 0.1% (v/v) formic acid, 0.1% (v/v) HFBA, 2% (v/v) methanol, and 0.02% (w/v) mM l-cysteine at pH 2.1 was used for chromatographic separation of the mercury species in the sample extracts. Extraction procedures were validated by using 50 mg of tuna fish tissue CRM-463 (2.85 ± 0.16 mg kg−1 for methylmercury). The recoveries obtained were 99 ± 3% and 93 ± 1% after acid leaching (HCl 7 M) and enzymatic extraction (15 mg protease type XIV in 2.5% (v/v) 2-mercaptoethanol), respectively. The optimal sonication conditions (5 min of exposure time and 40% of ultrasound amplitude) were applied to 5 mg of CRM-463 (88 ± 5%), 5 mg of mussel tissue (81 ± 11%) and to 2 mg of zebra fish embryos (90 ± 10%) obtaining good recoveries in all cases. Methylmecury was found to be the most abundant Hg specie in all samples. The developed method is simple and rapid (5 min sample treatment); it is suitable for very small samples and does not alter the original form of the mercury species. Thus, it is of special interest in those cases in which validation of the results may often be hampered by lack of sample availability.  相似文献   

12.
Dithizone (diphenylthiocarbazone) was used as a complexing agent in cloud point extraction for the first time and applied for selective preconcentration of trace amounts of silver. The analyte in the initial aqueous solution was acidified with sulfuric acid (pH<1) and Triton X-114 was added as a surfactant. After phase separation, based on the cloud point separation of the mixture, the surfactant rich phase was diluted with tetrahydrofuran (THF) and the analyte determined in the enriched solution by flame atomic absorption spectrometry. After optimization of the complexation and extraction conditions, a preconcentration factor of 43 was obtained for only 10 ml of sample. The analytical curve was linear in the range of 3-200 ng ml−1 and the limit of detection was 0.56 ng ml−1. The proposed method was applied to the determination of silver in water samples.  相似文献   

13.
A simple, sensitive and powerful on-line sequential injection (SI) dispersive liquid-liquid microextraction (DLLME) system was developed as an alternative approach for on-line metal preconcentration and separation, using extraction solvent at microlitre volume. The potentials of this novel schema, coupled to flame atomic absorption spectrometry (FAAS), were demonstrated for trace copper and lead determination in water samples. The stream of methanol (disperser solvent) containing 2.0% (v/v) xylene (extraction solvent) and 0.3% (m/v) ammonium diethyldithiophosphate (chelating agent) was merged on-line with the stream of sample (aqueous phase), resulting a cloudy mixture, which was consisted of fine droplets of the extraction solvent dispersed entirely into the aqueous phase. By this continuous process, metal chelating complexes were formed and extracted into the fine droplets of the extraction solvent. The hydrophobic droplets of organic phase were retained into a microcolumn packed with PTFE-turnings. A portion of 300 μL isobutylmethylketone was used for quantitative elution of the analytes, which transported directly to the nebulizer of FAAS. All the critical parameters of the system such as type of extraction solvent, flow-rate of disperser and sample, extraction time as well as the chemical parameters were studied. Under the optimum conditions the enhancement factor for copper and lead was 560 and 265, respectively. For copper, the detection limit and the precision (R.S.D.) were 0.04 μg L−1 and 2.1% at 2.0 μg L−1 Cu(II), respectively, while for lead were 0.54 μg L−1 and 1.9% at 30.0 μg L−1 Pb(II), respectively. The developed method was evaluated by analyzing certified reference material and applied successfully to the analysis of environmental water samples.  相似文献   

14.
The aim of the present work is combination of the advantages of magnetic solid phase extraction (MSPE) and dispersive liquid phase microextraction (DLLME) followed by filtration-based phase separation. A new pretreatment method was developed for trace determination of megestrol acetate and levonorgestrel by liquid chromatography/ultraviolet detection in biological and wastewater samples. After magnetic solid phase extraction, the eluent of MSPE was used as the disperser solvent for DLLME. Emulsion resulted from DLLME procedure was passed through the in-line filter for phase separation. Finally the retained analytes in the filter was washed with mobile phase of liquid chromatography and transferred to the column for separation. This approach offers the preconcentration factors of 3680 and 3750 for megestrol acetate and levonorgestrel, respectively. This guarantees determination of the organic compounds at trace levels. The important parameters influencing the extraction efficiency were studied and optimized. Under the optimal extraction conditions, a linear range of 0.05–50 ng mL−1 (R2 > 0.998) and limit of detection of 0.03 ng mL−1 were obtained for megestrol acetate and levonorgestrel. Under optimal conditions, the method was successfully applied for determination of target analytes in urine and wastewater samples and satisfactory results were obtained (RSDs < 6.8%).  相似文献   

15.
A simple and selective method for the separation and preconcentration of cadmium in water samples based on solidified floating organic drop microextraction (SFODME) was developed. The cadmium ion in aqueous solution was converted to CdI42− and was then extracted with 160 μL of 1-undecanol containing cationic surfactant of methyltrioctylammonium chloride (0.2 mol/L). When the extraction was completed, the sample vial was cooled in an ice bath for 5 min. The solidified extract was transferred into a conical vial where it melted immediately. It was then diluted to 250 μL upon addition of ethanol, and 100 μL of it was analyzed by flow injection flame atomic absorption spectrometry (FI-FAAS).Factors that influence the extraction and ion pair formation, such as pH, concentration of iodide and methyltrioctylammonium chloride, extraction time, sample volume, and ionic strength were optimized. Under the optimized conditions, a preconcentration factor of 640, detection limit of 0.0079 μg/L and good relative standard deviation of ±5.4% at 5 μg/L were obtained. The procedure was applied to tap water, well water, and sea water; and accuracy was assessed through recovery experiment and independent analysis by graphite atomic absorption spectrometry. The accuracy was also evaluated through analyses of certified reference ore.  相似文献   

16.
Aqueous to organic phase transfer of water soluble sub-nanocluster, Au25SG18 (-SG, glutathione thiolate) is demonstrated using the phase transfer reagent, tetraoctylammonium bromide. The phase transfer occurred by the electrostatic attraction between the hydrophilic carboxylate anion of the glutathione ligand on the cluster surface in the aqueous phase and the hydrophobic tetraoctylammonium cation in the toluene phase. Detailed spectroscopic characterization of the phase transferred cluster using optical absorption, photoluminescence and X-ray photoelectron spectroscopy showed that the cluster retains its integrity during the phase transfer. The interaction of the cluster with the phase transfer reagent can be studied with infrared spectroscopy. The phase transferred cluster can be dried and redissolved in an organic medium, just as the original cluster. This is the first report of the phase transfer of a sub-nanocluster, keeping the cluster core intact. The effect of dilution and pH on phase transfer of this cluster is studied in detail. This method promises several possibilities to explore the properties, reactivity and applications of sub-nanoclusters both in the aqueous and organic phases. Dedicated to Prof. C.N.R. Rao on his 75th birthday, whose work on phase transfer of nanoparticles has inspired this work.  相似文献   

17.
Monitoring of trace impurities in electroplating bath is needed to meet EU requirements for WEEE and RoHS and for quality control of electrodeposits. Methods using IC and 100% aqueous CE buffer were found producing non-repeatable results attributed to interference of surfactants and major methanesulphonate anion. A new CE buffer containing 1.5 mM tetraethylenepentaamine, 3 mM 1,3,5-benzenetricarboxylic acid and 15 mM Tris in 20% (v/v) methanol at pH = 8.4 was shown to enhance the separation window, reduce interaction between buffer and bath constituents, and give satisfactory repeatability with baseline separation for 14 organic and inorganic anions within 14 min, good repeatability for migration time (0.32–0.57% RSD), satisfactory peak area and peak height (2.9–4.5 and 3–4.7% respectively), low detection limit (S/N = 2, 20–150 ppb), and wide working ranges (0.1–100 ppm). The CE buffer with 20% (v/v) methanol has demonstrated its capability for identifying anion impurities causing problem in aged tin bath and the use of only 10-fold dilution to produce reliable results for quality assessment in plating bath containing high surfactant additives.  相似文献   

18.
In this paper, a new version of salting-out homogenous liquid–liquid extraction based on counter current mode combined with dispersive liquid–liquid microextraction has been developed for the extraction and preconcentration of some pesticides from aqueous samples and their determination by gas chromatography–flame ionization detection. In order to perform the method, aqueous solution of the analytes containing acetonitrile and 1,2-dibromoethane is transferred into a narrow bore tube which is filled partially with NaCl. During passing the solution through the tube, fine droplets of the organic phase are produced at the interface of solution and salt which go up through the tube and form a separated layer on the aqueous phase. The collected organic phase is removed and injected into de-ionized water for more enrichment of the analytes. Under the optimum extraction conditions, the method shows broad linear ranges for the target analytes. Enrichment factors and limits of detection for the selected pesticides are obtained in the ranges of 3480–3800 and 0.1–5 μg L−1, respectively. Relative standard deviations are in the range of 2–7% (n = 6, C = 50 or 100 μg L−1, each analyte). Finally, some aqueous samples were successfully analyzed using the developed method.  相似文献   

19.
Ginseng is a popular herb worldwide and has had varied uses in traditional Asian medicine for thousands of years. There are several different species of the herb, but all share the same constituents. Ginsenosides, the most extensively studied chemical components of ginseng, are generally considered to be one of the most important active ingredients of the plant. In this study, we have developed fast and efficient methodology for isolation of four known ginsenosides Rf, Rd, Re and Rb1 from Ginseng by high performance counter-current chromatography (HPCCC) coupled with evaporative light scattering detection (ELSD). The crude sample for HPCCC was purified firstly from a ginseng extraction using macroporous resin. The enriched saponin fraction (480 mg) was separated by using methylene chloride–methanol–5 mM aqueous ammonium acetate–isopropanol (6:2:4:3, v/v,) as the two-phase solvent system and yielded 10.7 mg of Rf, 11.0 mg of Rd, 13.4 mg of Re and 13.9 mg of Rb1. The purity of these ginsenosides was 99.2%, 88.3%, 93.7% and 91.8%, respectively assessed by HPLC-DAD-ELSD, and their structures were characterized by electrospray ionization mass spectrometry (ESI-MS) and compared with standards. Ammonium acetate was used to shorten the separation time and eliminate emulsification together with a flow step-gradient. The salt can be removed by re-dissolving the sample using acetone.  相似文献   

20.
In this article, a new ligandless dispersive liquid-liquid microextraction method has been developed for preconcentration of trace quantities of silver as a prior step to its determination by flame atomic absorption spectrometry. In the proposed approach, carbon tetrachloride and ethanol were used as extraction and dispersive solvents. Several factors that may be affected on the extraction process, like, extraction solvent, disperser solvent, the volume of extraction and disperser solvent, pH of the aqueous solution and extraction time were optimized. Under the optimal conditions, the calibration curve was linear in the range of 5.0 ng mL−1 to 2.0 μg mL−1 of silver with R2 = 0.9995 (n = 9) and detection limit based on three times the standard deviation of the blank (3Sb) was 1.2 ng mL−1 in original solution. The relative standard deviation for eight replicate determination of 0.5 μg mL−1 silver was ±1.5%. The high efficiency of dispersive liquid-liquid microextraction to carry out the determination of silver in complex matrices was demonstrated. The proposed method has been applied for determination of trace amount of silver in standard and water samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号