首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Basic operation principles of a lightweight, low power, low cost, portable ion chromatograph utilizing open tubular ion chromatography in capillary columns coated with multi-layer polymeric stationary phases are demonstrated. A minimalistic configuration of a portable IC instrument was developed that does not require any chromatographic eluent delivery system, nor sample injection device as it uses gravity-based eluent flow and hydrodynamic sample injection adopted from capillary electrophoresis. As a detection device, an inexpensive commercially available capacitance sensor is used that has been shown to be a suitable substitute for contactless conductivity detection in capillary separation systems. The built-in temperature sensor allows for baseline drift correction typically encountered in conductivity/capacitance measurements without thermostating device. The whole instrument does not require any power supply for its operation, except the detection and data acquisition part that is provided by a USB port of a Netbook computer. It is extremely lightweight, its total weight including the Netbook computer is less than 2.5 kg and it can be continuously operated for more than 8 h. Several parameters of the instrument, such as detection cell design, eluent delivery systems and data treatment were optimized as well as the composition of eluent for non-suppressed ion chromatographic analysis of common inorganic cations (Na+, NH4+, K+, Cs+, Ca2+, Mg2+, transition metals). Low conductivity eluents based on weakly complexing organic acids such as tartaric, oxalic or pyridine-2,6-dicarboxylic acids were used with contactless capacitance detection for simultaneous separation of mono- and divalent cations. Separation of Na+ and NH4+ cations was optimized by addition of 18-crown-6 to the eluent. The best separation of 6 metal cations commonly present in various environmental samples was accomplished in less than 30 min using a 1.75 mM pyridine-2,6-dicarboxylic acid and 3 mM 18-crown-6 eluent with excellent repeatability (below 2%) and detection limits in the low micromolar range. The analysis of field samples is demonstrated; the concentrations of common inorganic cations in river water, mineral water and snow samples were determined.  相似文献   

2.
The basic study on the determination of tetrafluoroborate ion (BF4) by ion chromatography, and total boron by conversion of boric acid to BF4 followed by ion chromatography of BF4 has been carried out. The results of thermodynamic calculations for the system of boric acid (H3BO3)-F-H+ showed that the mole fraction of BF4 was higher than 99% at pH lower than 3.5 and 4.5 when the total free fluoride concentration (2[H2F2] + 2[HF2] + [HF] + [F]) was as high as 0.1 and 1.0 M, respectively. The fraction of BF4 increased with increasing total free fluoride concentration. BF4 fraction values were higher than 99% at pH 0.75 and at total free fluoride concentration of 0.05 M or higher. BF4 was hardly formed at pH > 7 even when the total free fluoride concentration was as high as 1.0 M. According to the experimental results, the fraction of BF4 at pH 0.7-0.8 was 51.2, 95.6 and 96.7% when the total fluoride concentration (2[H2F2] + 2[HF2] + [HF] + [F] + 3[BF3OH] + 4[BF4]) was 0.2, 1.0 and 3.3 M, respectively. The formation reaction of BF4 from boric acid reached an equilibrium state within 20 min regardless of reaction temperature, in the range of 20-50 °C, when the total boron and total fluoride concentrations were 66.7 mM and 1.0 M, respectively. Although BF4 was formed only under acidic conditions, BF4, once formed, was very stable under alkaline conditions at least for several hours. We have concluded that BF4 could be analyzed by ion chromatography using sodium hydroxide solution as an eluent because BF4 was stable under chromatographic conditions. BF4 solution prepared from boric acid could be used as a standard solution in the ion chromatographic analysis of BF4 instead of the sodium tetrafluoroborate (NaBF4) reagent available commercially, if a discrepancy of about 4-5% was allowed.  相似文献   

3.
The study presents a new analytical method for speciation analysis in fractionation of aluminium fluoride complexes and free Al3+ in soil samples. Aluminium speciation was studied in model solutions and soil extract samples by means of high performance ion chromatography (HPIC) with UV-VIS detection using post-column reaction with tiron for the separation and detection of aluminium fluoride complex and Al3+ forms during one analysis. The paper presents particular stages of the chromatographic process optimization involving selecting the appropriate eluent strength, type of elution or concentration and quantity of derivatization reagent. HPIC was performed on a bifunctional analytical column Dionex IonPac CS5A. The use of gradient elution and the eluents A: 1 M NH4Cl and B: water acidified to pH of eluent phase, enabled full separation of fluoride aluminium forms as AlF2+, AlF30, AlF4 (first signal), AlF2+ (second signal) and form Al3+ in a single analytical procedure. The proposed new method HPIC-UVVIS was applied successfully in the quantitative and qualitative analysis of soil samples.  相似文献   

4.
A method was developed for the quantitative determination of cations and anions in Antarctic ice cores at μg L−1 and sub-μg L−1 levels by ion chromatography (IC), after ultra-clean decontamination procedures. Strict manipulation and decontamination procedures were used in sub-sampling, in order to minimise sample contamination. Na+, NH4+, K+, Mg2+ and Ca2+ were determined by 12-min isocratic elution (H2SO4 eluent). Contemporaneously, in a parallel device, F, MSA (methanesulfonic acid), Cl, NO3 and SO42− were analysed in a single 12-min run with multiple-step elution using Na2CO3/NaHCO3 as eluent. Melted ice samples were pumped from their still-closed containers (polystyrene accuvettes with polyethylene caps), shared between the two ion chromatographic systems, online filtered (0.45 μm Teflon membrane) and pre-concentrated (anions and cations pre-concentration columns) using a flow analysis system, thus avoiding uptake of contaminants from the laboratory atmosphere. Sensitivity, linear range, reproducibility and detection limit were evaluated for each chemical species. Anion or cation detection limits ranged from 0.01 to 0.15 μg L−1 by using a relatively small sample volume (1.5 mL). Such values are significantly lower than those reported in literature for almost all the components. These methods were successfully applied to the analysis of cations and anions at trace levels in the Dome C ice core. The composition of the atmospheric aerosol for the last 850 kyr was reconstructed by high-resolution continuous chemical stratigraphies. Concentration trends in the last nine glacial-interglacial climatic cycles were shown and briefly discussed.  相似文献   

5.
A simple potassium hydroxide electrodialytic generator (EDG) with singe membrane configuration is described. In this setup, one cation exchange resin (CER) bead is used to fabricate the EDG in place of the common membrane sheet. The device is implemented simply in a commercial stainless steel (SS) Tee which serves as both the EDG cartridge and the cathodic electrode. The present EDG has much lower internal volume (∼0.16 (L), which is well suited with capillary ion chromatography system. The device has been tested up pressures to 3200 psi and could be directly deployed on the high-pressure side of the pump. The electrolysis gas can be effectively removed by a segment of PTFE tubing. In the tested range of 0-100 mM, the KOH concentration is generated linearly with the applied current being near-Faradaic efficiency. The device permits both isocratic and gradient operation with good reproducibility, as demonstrated by the analysis of anions.  相似文献   

6.
Polyelectrolyte multilayers deposited on the wall of fused silica capillaries were used as stationary phases in open tubular ion chromatography. The multilayers were formed by flushing the capillaries with solutions of polyanions and polycations such as polydiallyldimethylammonium chloride and dextran sulphate. Columns with several bi-layers were constructed and used in low pressure non-suppressed open tubular ion chromatography of common inorganic anions (F, Cl, NO3) and cations (Li+, Na+, NH4+, K+, Cs+) with contactless conductometric detection. Using sodium benzoate and tartaric acid eluents the separations were typically achieved in less than 35 min with separation efficiencies between 2000 and 9000 theoretical plates. A bi-functional column was prepared that contains both anionic and cationic functional groups and was used for simultaneous separation of anions and cations.  相似文献   

7.
For the isocratic ion chromatography (IC) separation of low-molecular-mass organic acids and inorganic anions three different anion-exchange columns were studied: IonPac AS14 (9 μm particle size), Allsep A-2 (7 μm particle size), and IC SI-50 4E (5 μm particle size). A complete baseline separation for all analyzed anions (i.e., F, acetate, formate, Cl, NO2, Br, NO3, HPO42− and SO42−) in one analytical cycle of shorter than 17 min was achieved on the IC SI-50 4E column, using an eluent mixture of 3.2 mM Na2CO3 and 1.0 mM NaHCO3 with a flow rate of 1.0 mL min−1. On the IonPac AS14 column, it was possible to separate acetate from inorganic anions in one run (i.e., less than 9 min), but not formate, under the following conditions: 3.5 mM Na2CO3 plus 1.0 mM NaHCO3 with a flow rate of 1.2 mL min−1. Therefore, it was necessary to adapt a second run with a 2.0 mM Na2B4O7 solution as an eluent under a flow rate of 0.8 mL min−1 for the separation of organic ions, which considerably enlarged the analysis time. For the Allsep A-2 column, using an eluent mixture of 1.2 mM Na2CO3 plus 1.5 mM NaHCO3 with a flow rate of 1.6 mL min−1, it was possible to separate almost all anions in one run within 25 min, except the fluoride-acetate critical pair. A Certified Multianion Standard Solution PRIMUS for IC was used for the validation of the analytical methods. The lowest RSDs (less than 1%) and the best LODs (0.02, 0.2, 0.16, 0.11, 0.06, 0.05, 0.04, 0.14 and 0.09 mg L−1 for F, Ac, For, Cl, NO2, Br, NO3, HPO42− and SO42−, respectively) were achieved using the IC SI-50 4E column. This column was applied for the separation of concerned ions in environmental precipitation samples such as snow, hail and rainwater.  相似文献   

8.
A convenient and sensitive method for the simultaneous determination of trace level of bromate and chlorinated haloacetic acids in bottled drinking water with ion chromatography is presented. With a high capacity anion-exchange column and 11.5 mmol/l Na2CO3 eluent, all the 16 analytes could be separated in one injection within 31 min. By employing a microwave based evaporation technique, the bottled drinking water sample could be concentrated tenfold in 10 min. The recoveries of the compounds ranged from 90.6 to 107.2%. With a 500 μl large volume injection and high performance anion Atlas electrolytic suppressor, the detection limits were 0.06, 0.08, 0.06, 0.14 and 0.85 μg/l for BrO3, ClO3, monoacetic acid, dichloroacetic acid and trichloroacetic acid, respectively.  相似文献   

9.
Sabo M  Matúška J  Matejčík S 《Talanta》2011,85(1):400-405
This study deals with O2 generation in corona discharge (CD) in point to plane geometry for single flow ion mobility spectrometry (IMS) with gas outlet located behind the ionization source. We have designed CD of special geometry in order to achieve the high O2 yield. Using this ion source we have achieved in zero air conditions that up to 74% all negative ions were O2 or O2(H2O). It has been demonstrated that the non-electronegative nitrogen positively influences the efficiency of O2 generation in O2/N2 mixtures. The reduced ion mobility of 2.27 cm2 V−1 s−1 has been measured for O2/O2(H2O) ions in zero air. Additional ions detected in zero air (less than 200 ppb CO2) using the mass spectrometric and IMS technique were, NO2, N2O2 (2.37 cm2 V−1 s−1), NO3, N2O3 and N2O3(H2O). The CO3 and CO4 ions have been detected after the introduction of 5 ppm CO2 into zero air.  相似文献   

10.
The potentiometric behavior of coated wire electrodes based on dodecylbenzenesulfonate-doped polypyrrole (PPy-DBS) and hyamine as ion exchanger was investigated. The PPy-DBS was prepared electrochemically by anodic polymerization of pyrrole in the presence of DBS ions in aqueous solution and used as ionophore for construction of the sensor. Two types of coated wire electrodes made of PVC-PPy-DBS and PVC-Hyamine-DBS, plasticized with ortho-nitrophenyloctylether (o-NPOE) showed the Nernstian behavior (with respective calibration slopes of about 58 and 60 mV per decade) over the DBS concentration range of 3.0×10−6 to 1.1×10−3 M and 5.0×10−6 to 1.3×10−3 M, respectively. The influence of membrane composition, type of plasticizer, and pH of test solution on the potentiometric responses of the two electrodes was investigated. The potentiometric response was independent of the pH of test solution in the range 3-10. The response time of electrodes was fast (10 s for both types of electrode), and they can be used for at least 3 months without any significant change in potential. The proposed electrodes revealed very good selectivity for DBS ion over diverse inorganic and organic anions. The potentiometric selectivity coefficients for the PPy-DBS based electrode revealed a significant improvement as compared to the electrode made by conventional Hyamine-DBS (Hya-DBS) anion exchanger. The proposed electrode was used for determination of DBS ion in some commercial detergents. The results of the potentiometric determinations were in satisfactory agreement with those obtained by a standard method (two-phase titration).  相似文献   

11.
离子交换色谱中混合保留机理的研究   总被引:1,自引:0,他引:1  
张嘉捷  王雪  陈梅兰  朱岩 《化学学报》2008,66(8):964-968
鉴于离子交换色谱中被测离子和有机聚合物树脂之间存在的吸附作用, 选择阴离子交换色谱柱IonPacAS9-HC为研究对象, 针对离子交换色谱中的吸附保留行为, 从色谱混合保留机理的角度出发, 考虑各色谱柱固定相含量和界面吸附面积的不同, 建立柱间保留的相互关系方程. 在五根不同批号IonPacAS9-HC (250 mm×2 mm I.D.)柱上, 以含50%乙腈(V/V)的9 mmol/L Na2CO3为流动相, 0.25 mL/min流速, 对12个不同结构类型的无机和有机阴离子(氟离子、氯离子、硫酸根、磷酸根、二羟基丁酸、丙酮酸、乙酸、丙烯酸、苯甲酸、丙二酸、酒石酸和邻苯二甲酸)的保留行为进行研究, 并采用推导所得的混合保留机理模型对溶质这一保留特征进行表征, 结果较为理想, 其中一价离子的相关系数为0.9~0.999, 二价离子的相关系数为0.999~1, 为离子交换色谱中吸附保留行为的研究提供了新方法.  相似文献   

12.
The mechanism of pit growth of pure aluminum (Al) in sulfate ion (SO4 2–)- or nitrate ion (NO3 )-containing 0.1 M sodium chloride solutions has been studied in terms of the morphological changes of artificial pits using potentiodynamic polarization experiment, potentiostatic current transient technique and optical microscopy. The increase in SO4 2– and NO3 ion concentrations in NaCl solution raised the pitting potential E pit of pure Al, which is ascribed to the impediment to pit initiation on pure Al by the addition of SO4 2– or NO3 ions. From the potentiostatic current transients of artificial pits in aqueous 0.1 M NaCl solution, the average value of the pit current was observed to increase with increasing SO4 2– ion concentration, whereas that value of the pit current in the presence of NO3 ions increased up to ca. 0.4 M NO3 ion concentration and then decreased abruptly with increasing NO3 ion concentration. From observations of the morphologies of the pits, it appears that the pit grows preferentially in the lateral direction or in the downward direction by adding SO4 2– or NO3 ions to aqueous 0.1 M NaCl solution, respectively. Based upon the experimental results, two different pit growth mechanisms by anion additives can be proposed: (1) pit growth by the preferential attack of both SO4 2– and Cl to the pit wall in SO4 2–-containing solutions; (2) pit growth by the creation of an aggressive environment at the pit bottom up to 0.4 M NO3 ion concentration due to the lower mobility of NO3 than Cl in NO3 -containing solutions. Electronic Publication  相似文献   

13.
Summary The retention and separation of glucosinolates, as organic anions, were studied on a silica-based strong anion exchanger under isocratic elution conditions. All glucosinolates carry the same functional ionic group (-OSO 3 ), however they do not have the same retention in anion exchange chromatography. The plots of capacity factors of organic anions versus the reciprocal of eluent ion concentration show good linearity. From the slope and y-intercept data the major retention mechanisms are interpreted as ion exchange and reversed-phase interactions. The effects of nature and concentration of the eluent ion and the influence of organic modifier addition to the aqueous buffered mobile phase are also investigated. Direct and indirect UV detection were used.Our results open the way for the development of new systems for intact glucosinolate analysis which are easier to use than the present ion-pairing chromatographic method.  相似文献   

14.
Catalytic effect of metal ions on luminol chemiluminescence (CL) was investigated by sequential injection analysis (SIA). The SIA system was set up with two solenoid micropumps, an eight-port selection valve, and a photosensor module with a fountain-type chemiluminescence cell. The SIA system was controlled and the CL signals were collected by a LabVIEW program. Aqueous solutions of luminol, H2O2, and a sample solution containing metal ion were sequentially aspirated to the holding coil, and the zones were immediately propelled to the detection cell. After optimizing the parameters using 1 × 10−5 M Fe3+ solution, catalytic effect of some metal species was compared. Among 16 metal species examined, relatively strong CL responses were obtained with Fe3+, Fe2+, VO2+, VO3, MnO4, Co2+, and Cu2+. The limits of detection by the present SIA system were comparable to FIA systems. Permanganate ion showed the highest CL sensitivity among the metal species examined; the calibration graph for MnO4 was linear at the concentration level of 10−8 M and the limit of detection for MnO4 was 4.0 × 10−10 M (S/N = 3).  相似文献   

15.
Baozhen Wang 《Talanta》2007,72(2):415-418
Multilayer thin films composed of poly(allylamine hydrochloride) (PAH) and carboxymethyl cellulose (CMC) have been prepared on the surface of a gold (Au) disk electrode by a layer-by-layer deposition of PAH and CMC and ferricyanide ions ([Fe(CN)6]3−) were confined in the film. [Fe(CN)6]3− ions can be successfully confined in the films from weakly acidic or neutral [Fe(CN)6]3− solutions, while, in basic solution, [Fe(CN)6]3− ion was not confined. The [Fe(CN)6]3− ion-confined Au electrode showed clear redox peaks in the cyclic voltammogram around 0.35 V versus Ag/AgCl. The amounts of [Fe(CN)6]3− ions confined in the films depended on the thickness of the films or the number of layers in the LbL films. The [Fe(CN)6]3− ion-confined Au electrode was used for electrocatalytic determination of ascorbic acid in the concentration range of 1-50 mM.  相似文献   

16.
M. Rajeswara Rao 《Tetrahedron》2010,66(9):1728-1162
3,5-Bis(trimethylsilylethynyl)-4,4-difluoro-8-(4-tolyl)-4-bora-3a,4a-diaza-s-indacene [BODIPY(CCTMS)2] has been synthesized by coupling of 3,5-dibromo-4,4-difluoro-8-(4-tolyl)-4-bora-3a,4a-diaza-s-indacene with trimethylsilylacetylene under pd(0) coupling conditions. The BODIPY(CCTMS)2 was used as a selective colourimetric and fluorescent chemodosimeter for fluoride ion, following the F ion induced cleavage of trimethylsilyl group, the protecting group of ethyne functionality by monitoring the changes in UV-vis and fluorescence properties. The dosimeter BODIPY(CCTMS)2 display clear changes in colour, absorption and emission bands selectively for F ion over other anions such as Cl, Br, I, ClO4 and HPO42−.  相似文献   

17.
This paper deals with the desulfonation properties of some strong acid cation-exchange resins. The sulfate concentration in solution is continuously increased when a strong acid cation-exchange resin is mixed with water. The leaching of sulfate results from the desulfonation of the fixed group, and the amount of leached sulfate depends on the counter ion charge, the crosslinking degree and the exchanger matrix. The effects of the counter ion charge on the desulfonation rate suggested that the counter ion induces the nucleophilic attack of a water molecule on the sulfo group. This interpretation was supported by semiempirical molecular orbital calculations for the C6H5SO3Mm+ (Mm+ = Na+, Mg2+ and Al3+) systems, and the transition state of the Na+ system was successfully predicted by DFT calculations. The crosslinking degree influenced the desulfonation rate, which can be related to the decreasing hydration number of each counter ion in the resin phase with the increasing crosslinking degree. Furthermore, different exchanger matrices produced the differences in the rates, which may be derived from the electron-density donation from the exchanger matrix to the sulfo group. The desulfonation is governed by the electron-density of the sulfur atom and the water activity in the solid phase.  相似文献   

18.
Based on the characteristics of synchronous fluorescence spectroscopy (SFS), a new method with high sensitivity and selectivity was developed for rapid determination of silver ion with functional cadmium sulphide (CdS) nanoparticles as a fluorescence probe. When Δλ (λem − λex) = 215 nm, maximum synchronous fluorescence is produced at 304 nm. Under optimal conditions, functional cadmium sulphide displayed a calibration response for silver ion over a wide concentration range from 0.8 × 10−10 to 1.5 × 10−8 mol L−1. The limit of detection was 0.4 × 10−10 mol L−1 and the relative standard deviation of seven replicate measurements for the lowest concentration (0.8 × 10−10 mol L−1) was 2.8%. Compared with several fluorescence methods, the proposed method had a wider linear range and improved the sensitivity. Furthermore, the concentration dependence of the synchronous fluorescence intensity is effectively described by a Langmuir-type binding isotherm.  相似文献   

19.
In this work, hydrolysis of three different hexafluorophosphate salts in purified water was investigated. Aqueous samples of lithium hexafluorophosphate (LiPF6), sodium hexafluorophosphate (NaPF6) and potassium hexafluorophosphate (KPF6) were prepared and stored for different times. Ion chromatography (IC) with UV as well as non-suppressed and suppressed conductivity detection was used for the analysis of the reaction products. For the detection and identification of the formed decomposition products, an IC method using IonPac AS14A 250 mm × 4.0 mm i.d. column and 2.5 mM KHCO3–2.5 mM K2CO3 eluent was established. Besides hexafluorophosphate, four other anionic species were detected in fresh and matured aqueous solutions. The hydrolysis products fluoride (F), monofluorophosphate (HPO3F), phosphate (HPO42−) and difluorophosphate (PO2F2) were found and were unambiguously identified by means of standards or electrospray ionization mass spectrometry (ESI-MS). It was shown that stability of hexafluorophosphate solutions depends on the nature of the counter ion and decreases in the order potassium > sodium > lithium.  相似文献   

20.
Monser L  Adhoum N  Sadok S 《Talanta》2004,62(2):389-394
A novel gas diffusion-flow injection method has been developed for the rapid and sensitive determination of total inorganic carbon (TIC) in water. The method is based on the diffusion of CO2 across gas permeable membrane from a donor stream containing 0.1 M HCl to an acceptor stream of sodium acetate (10−5 mol l−1 and pH 10). The CO2 trapped in the acceptor stream passes through an electrochemical flow cell contains a tungsten oxide wire and a silver/silver chloride electrode, where it was sensitively detected. The parameters affecting the sensitivity of the electrode such as buffer concentration, pH, flow rate and injected volume were studied in detail. The electrode response was linear in the concentration range from 5 to 100 μg ml−1 CO32− with a correlation coefficient (R2) of 0.998. Precision (R.S.D.) was 1.42% for 20 μg ml−1 standard solution of CO32− (n=10). The detection limit was 0.20 μg ml−1 CO32−. The method was evaluated by the injection of real natural water samples and an average recovery of 100.1% was obtained. The sampling rate was 30 samples h−1. The method is simple, feasible with satisfactory accuracy and precision and thus could be used for monitoring TIC in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号