首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 201 毫秒
1.
The hyphenation of capillary electrophoresis and mass spectrometry (CE/MS) remains a minor technique compared with liquid chromatography/mass spectrometry (LC/MS), which represents nowadays the standard instrumentation, regardless of its introduction thirty years ago. However, from a theoretical point of view, CE coupling should be quite favorable especially with electrospray ionization mass spectrometry (ESI‐MS). At the time, the sensitivity provided by CE/MS was often limited, due to hyphenation requirements, which at some point appeared to disqualify CE/MS from benefiting from the performance gain driving the evolution of MS instruments. However, this context has been significantly modified in a matter of a few years. The development of innovative CE/MS interfacing systems has enabled an important improvement regarding sensitivity and reinforced robustness in order to provide an instrumentation accessible to the largest scientific community. Because of the unique selectivity delivered by the electrophoretic separation, CE/MS has proved to be particularly relevant for the analysis of biological molecules. The conjunction of these aspects is motivating the interest in CE/MS analysis and shows that CE/MS is mature enough to enrich the toolbox of analytical techniques for the analysis of complex biological samples. Here we discuss the characteristics of the major types of high‐sensitivity CE/ESI‐MS instrumentation and emphasize the late evolution and future positioning of CE/MS analysis for the characterization of biological molecules like peptides and proteins, through some pertinent applications.  相似文献   

2.
Implementation and optimization of an off-line capillary electrophoresis (CE)/(−)nanoESIchip-quadrupole time-of-flight (QTOF) mass spectrometric (MS) and tandem MS system for compositional mapping and structural investigation of components in complex carbohydrate mixtures is described. The approach was developed for glycoscreening and applied to O-glycosylated peptides from urine of a patient suffering from α-N-acetylhexosaminidase deficiency, known as Schindler's disease. The fundamental issue of sensitivity, previously representing a serious drawback of the off-line CE/MS analysis, could be positively addressed by the off-line conjunction of CE with automated chip-based ESI-QTOF-MS to provide flexibility for CE/chip MS coupling and enhance structural elucidation of single components in heterogeneous mixtures. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
On-line immobilized metal affinity chromatography/capillary electrophoresis/electrospray ionization-mass spectrometry (IMAC/CE/ESI-MS) offers selective preconcentration of phosphorylated peptides with identification of the phosphorylated amino acid(s). The preconcentration provides low concentration limits of detection and capillary electrophoresis separates the peptides. Recently, we reported a fast, simple, and sensitive on-line IMAC/CE/ESI-MS/MS method for the determination of phosphopeptides at low-pmole levels. That work is expanded here by use of multiple stage tandem mass spectrometry (MS(n), n = 2,3) to isolate and fragment target ions to provide more reliable assignments of phosphorylated residues. The application of IMAC/CE/ESI-MS(n) is demonstrated by the analysis of tryptic digests of alpha- and beta-casein and in-gel tryptic digests of beta-casein.  相似文献   

4.
Capillary electrophoresis (CE) was coupled off-line with matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) for the analysis of proteins and peptides. CE fractions were collected directly on a matrix-coated MALDI target, using a sheath-flow interface. Protein adsorption during CE separations was prevented by coating the capillaries with the physically adsorbed, cationic polymer PolyE-323. The CE/MALDI-MS system was used for the analysis of model proteins and peptides at physiological pH as well as analysis of proteins in tear fluid. Moreover, tryptic on-target digestion of the collected protein fractions, with subsequent MALDI-MS and MS/MS peptide analysis, was demonstrated.  相似文献   

5.
An approach based on staggered multistep elution solid-phase extraction (SPE) capillary electrophoresis/tandem mass spectrometry (CE/MS/MS) was developed in the analysis of digested protein mixtures. On-line coupling of SPE with CE/MS was achieved using a two-leveled two-cross polydimethylsiloxane (PDMS)-based interface. Multistep elution SPE was used prior to CE to provide an additional dimension of separation, thus extending the separation capacity for the peptide mixture analysis. By decreasing in the number of co-eluting peptides, problems stemming from ionization suppression and finite MS/MS duty cycle were reduced. As a result, sequence coverage increased significantly using multistep elution SPE-CE/MS/MS compared to one-step elution SPE-CE/MS/MS in the analysis of a single protein tryptic digest (49% vs. 18%) and a six protein tryptic digest (22-71% vs. 10-44%). A staggered CE method was incorporated to increase the throughput. The electropherograms of consecutive CE runs were partially overlapped by injecting the sample plug at a fixed time interval. With the use of a 5 min injection interval, slightly poor results were obtained in comparison with the sequential CE method while the total analysis time was reduced to 28%.  相似文献   

6.
Pioch M  Bunz SC  Neusüss C 《Electrophoresis》2012,33(11):1517-1530
Advanced analytical techniques play a crucial role in the pharmaceutical and biotechnological field. In this context, capillary electrophoresis/mass spectrometry (CE/MS) has attracted attention due to efficient and selective separation in combination with powerful detection allowing identification and detailed characterization. Method developments and applications of CE/MS have been focused on questions not easily accessible by liquid chromatography/mass spectrometry (LC/MS) as the analysis of intact proteins, carbohydrates, and various small molecules, including peptides. Here, recent approaches and applications of CE/MS relevant to (bio)pharmaceuticals are reviewed and discussed to show actual developments and future prospects. Based on other reviews on related subjects covering large parts of previous works, the paper is focused on general ideas and contributions of the last 2 years; for the analysis of glycans, the period is extended back to 2006.  相似文献   

7.
Capillary separations interfaced to tandem mass spectrometry provide a very powerful tool for the characterization of biological macromolecules such as proteins and peptides. The development of real time data-dependent data acquisition has further enhanced the capability of this method. However, the application of this technique to fast capillary separations has been limited by the relatively slow spectral acquisition speed available on scanning mass spectrometers. In this work, an ion trap storage/reflectron time-of-flight mass spectrometer (IT/reTOF-MS) has been used as an on-line tandem mass detector for capillary high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE) separations of peptide mixtures including a protein digest. By taking advantage of the nonscanning property of the time-of-flight mass spectrometer, a fast spectral acquisition rate has been achieved. This fast spectral acquisition rate, combined with a new protocol that speeds up tickle voltage optimization, has provided MS/MS spectra for multiple components in a hemoglobin digest during one liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) run. Further, the IT/reTOF-MS has the speed to provide MS/MS spectra for multiple components in a CE separation of a synthetic peptide mixture within one CE/MS/MS run.  相似文献   

8.
Neuropeptides are heavily posttranslationally modified (PTM) gene products that are often characterized by a variety of mass spectrometric approaches. Recently, the occurrence of amino acids in the D-form has been documented in several neuropeptides. As this modification has no associated mass shift, this particular PTM is difficult to evaluate using mass spectrometry (MS) alone. Here we demonstrate several approaches using capillary electrophoresis (CE) with absorbance and laser-induced fluorescence (LIF) for the separation of native and derivatized molluscan peptides containing D-amino acids. The combination of peptide derivatization followed by CE/LIF is well suited for single cell measurements because of its ability to characterize the peptides in such small samples. In order to verify this approach, the D-Trp-containing peptide NdWFa (NH2-Asn-D-Trp-Phe-CONH2), present in individual neurons from the marine mollusk Aplysia californica, has been characterized. The mass spectra show that NdWFa and/or NWFa are present in specific neurons; CE/LIF analysis of these cells demonstrates that NdWFa is the dominant form of the peptide.  相似文献   

9.
CE offers the advantage of flexibility and method development options. It excels in the area of separation of ions, chiral, polar and biological compounds (especially proteins and peptides). Masking the active sites on the inner surface of a bare fused silica capillary wall is often necessary for CE separations of basic compounds, proteins and peptides. The use of capillary surface coating is one of the approaches to prevent the adsorption phenomena and improve the repeatability of migration times and peak areas of these analytes. In this study, new capillary coatings consisting of (i) derivatized polystyrene nanoparticles and (ii) derivatized fullerenes were investigated for the analysis of peptides and protein digest by CE. The coated capillaries showed excellent run‐to‐run and batch‐to‐batch reproducibility (RSD of migration time ≤0.5% for run‐to‐run and ≤9.5% for batch‐to‐batch experiments). Furthermore, the capillaries offer high stability from pH 2.0 to 10.0. The actual potential of the coated capillaries was tested by combining CE with MALDI‐MS for analysing complex samples, such as peptides, whereas the overall performance of the CE‐MALDI‐MS system was investigated by analysing a five‐protein digest mixture. Subsequently, the peak list (peptide mass fingerprint) generated from the mass spectra of each fraction was entered into the Swiss‐Prot database in order to search for matching tryptic fragments using the MASCOT software. The sequence coverage of analysed proteins was between 36 and 68%. The established technology benefits from the synergism of high separation efficiency and the structure selective identification via MS.  相似文献   

10.
A novel method for electrophoretic mobility-assisted identifications of proteins, using capillary electrophoresis/mass spectrometry (CE/MS) under methanolic conditions, was developed. The number of functional groups of the enzymatic digest peptides was estimated from a single run CE/MS analysis and utilized as an additional tag for database searching in addition to the mass map of the peptides. The additional amino acid information thus obtained can improve the confidence level of the protein identification. The database searching software algorithm ProFound was modified to accept the tag, based on this new concept. In this study, optimization of the CE/MS conditions for the estimation of basic functional groups was performed as an example. An accurate value of the number of such functional groups was obtained from CE characteristics when methanolic buffer (methanol/formic acid/water = 60:20:20) was used, via an excellent correlation (r = 0.997) between the number of functional groups of the peptides and [MW((2/3))]. The mass spectrometry sensitivity was also improved when using the methanolic buffer in comparison with that obtained using aqueous 1% formic acid buffer. The identification of a protein of Saccharomyces cerevisiae, which was separated by two-dimensional electrophoresis, was performed using the methanolic buffer in combination with sheathless nanoelectrospray CE/MS. A protein spot that had not been identified by MALDI-TOFMS and LC/MS/MS was successfully identified using this new method.  相似文献   

11.
A simple sheathless capillary electrophoresis (CE)/mass spectrometry (MS) interface was constructed by combining widely used nanospray needles with fused-silica capillaries and it was successfully applied for the separation of peptides. The end of the CE capillary was pulled to a taper, etched and then fitted into the metal-coated nanospray borosilicate capillary. The nanospray needle can be used for several CE runs, but it can be easily and rapidly changed in the case of accidental breakage or evaporation of the coating. A fast capillary electrochromatographic method was also developed for MS analysis of peptides containing numerous basic amino acids.  相似文献   

12.
梁玉  张丽华  张玉奎 《色谱》2020,38(10):1117-1124
蛋白质组学研究在生物学、精准医学等方面发挥着重要的作用。然而研究面临的巨大挑战来自生物样品的复杂性,因此在质谱(MS)鉴定技术不断革新的同时,发展分离技术以降低样品复杂度尤为重要。毛细管电泳(CE)技术具有上样体积小、分离效率高、分离速度快等优势,其与质谱的联用在蛋白质组学研究中越来越受到关注。低流速鞘流液和无鞘流液接口的发展及商品化推动了CE-MS技术的发展。目前毛细管区带电泳(CZE)、毛细管等电聚焦(CIEF)、毛细管电色谱(CEC)等分离模式已与质谱联用,其中CZE-MS应用最广泛。目前被广泛采用的蛋白质组学研究策略主要是基于酶解肽段分离鉴定的"自下而上(bottom-up)"策略。首先,CE-MS技术对酶解肽段的检测灵敏度高达1 zmol,已成功应用于单细胞蛋白质组学;其次,毛细管电泳技术与反相液相色谱互补,为疏水性质相近的肽段(尤其是翻译后修饰肽段)的分离鉴定提供了新的途径。基于整体蛋白质分离鉴定的自上而下"top-down"策略可以直接获得更精准、更完整的蛋白质信息。CE技术在蛋白质大分子的分离方面具有分离效率高、回收率高的优势,其与质谱的联用提高了整体蛋白质的鉴定灵敏度和覆盖度。非变性质谱(native MS)是一种在近生理条件下从完整蛋白质复合物水平上进行分析的质谱技术。CE与非变性质谱联用已被尝试用于蛋白质复合体的分离鉴定。该文引用了与CE-MS和蛋白质组学应用相关的93篇文献,综述了以上介绍的CE-MS的研究进展以及在蛋白质组学分析中的应用优势,并总结和展望了其应用前景。  相似文献   

13.
Capillary electrophoresis (CE) offers fast and high‐resolution separation of charged analytes from small injection volumes. Coupled to mass spectrometry (MS), it represents a powerful analytical technique providing (exact) mass information and enables molecular characterization based on fragmentation. Although hyphenation of CE and MS is not straightforward, much emphasis has been placed on enabling efficient ionization and user‐friendly coupling. Though several interfaces are now commercially available, research on more efficient and robust interfacing with nano‐electrospray ionization (ESI), matrix‐assisted laser desorption/ionization (MALDI) and inductively coupled plasma mass spectrometry (ICP) continues with considerable results. At the same time, CE‐MS has been used in many fields, predominantly for the analysis of proteins, peptides and metabolites. This review belongs to a series of regularly published articles, summarizing 248 articles covering the time between June 2016 and May 2018. Latest developments on hyphenation of CE with MS as well as instrumental developments such as two‐dimensional separation systems with MS detection are mentioned. Furthermore, applications of various CE‐modes including capillary zone electrophoresis (CZE), nonaqueous capillary electrophoresis (NACE), capillary gel electrophoresis (CGE) and capillary isoelectric focusing (CIEF) coupled to MS in biological, pharmaceutical and environmental research are summarized.  相似文献   

14.
Sample injection is a critical step in a capillary electrophoresis (CE) analysis. Electrokinetic injection is the simplest approach and is often selected for implementation in portable CE instruments. However, in order to minimize the effect of sample matrix upon the results of a CE analysis, hydrodynamic injection is preferred. Although portable CE instruments with hydrodynamic injection have been reported, injection has always been performed at the grounded end of the capillary. This simplifies fluidic handling but limits coupling with electrochemical detectors and electrospray ionization–mass spectrometry (ESI–MS). We demonstrated previously that injection at the high-voltage (HV) end of the capillary could be performed using an HV-compatible rotary injection valve (fixed-volume injection). However, the mismatch between the bore sizes of the channels on the rotor–stator valve and the separation capillary caused peak tailing and undesired mixing, impairing analytical performance. In this work, we present an HV-compatible hydrodynamic injection approach that overcomes the issues associated with the fixed-volume injection approach reported previously. The performance of the CE instrument was demonstrated by analyzing a mixture of 13 amino acids by CE coupled to laser-induced fluorescence, which showed relative standard deviations for peak area and migration time below 5% and 1%, respectively, for triplicate analysis. Additionally, replicate measurements of a mixture of amino acids, peptides, nucleobases, and nucleosides by CE coupled to electrospray ionization–mass spectrometry (CE–ESI–MS) were performed to evaluate peak tailing, and results were similar to those obtained with a commercial CE–ESI–MS setup.  相似文献   

15.
Presented is a method for analyzing sulfated peptides, and differentiating the post-translational modification (PTM) from its isobaric counterpart phosphorylation, using quadrupole time-of-flight (Qq/TOF) mass spectrometry (MS) and positive ion nanoelectrospray MS/MS. A set of commercially available sulfo- and phosphopeptide standards was analyzed via in-source dissociation and MS/MS to generate fragmentation signatures that were used to characterize and differentiate the two modifications. All of the phosphorylated peptides retained their +80 Da modifications under collision-induced decomposition (CID) conditions and peptide backbone fragmentation allowed for the site-specific identification of the modification. In sharp contrast, sulfated peptides lost SO3 from the precursor as the collision energy (CE) was increased until only the non-sulfated form of the peptide was observed. The number of 80 Da losses indicated the number of sulfated sites. By continuing to ramp the CE further, it was possible to fragment the non-sulfated peptides and obtain detailed sequence information. It was not possible to obtain site-specific information on the location of the sulfate moieties using positive ion MS/MS as none of the original precursor ions were present at the time of peptide backbone fragmentation. This method was applied to the analysis of recombinant human B-domain deleted factor VIII (BDDrFVIII), which has six well-documented sulfation sites and several potential phosphorylation sites located in two of the sulfated regions of the protein. Seven peptides with single and multiple +80 Da modifications were isolated and analyzed for their respective PTMs. The fragmentation patterns obtained from the BDDrFVIII peptides were compared with those obtained for the standard peptides; and in all cases the peptides were sulfated. None of the potential phosphorylation sites were found to be occupied, and these results are consistent with the literature.  相似文献   

16.
Capillary electrophoresis combined with mass spectrometry (CE‐MS) has been used for several years for the investigation of proteins and peptides as biomarkers for diagnosis and prognosis of diseases. In addition, the technology has recently been introduced to support the stratification of patients in clinical trials and in large clinical studies. In this review, we aim at presenting the development of CE‐MS over the last 20 years, by focusing on the clinical potential of proteome and peptidome analysis and highlighting some of the key technical issues and advancements that have been made in this context towards implementation. Based on the reviewed literature, it has become evident that CE‐MS is now an accepted tool in clinical application in several disease areas. Apart from a critical overview on the current state‐of‐the‐art in CE‐MS, we also indicate the expected developments for potential future use.  相似文献   

17.
Capillary electrophoresis-electrospray tandem mass spectrometry (CE-MS/MS) has been used to identify degradation products of the aspartyl tripeptides Phe-Asp-GlyNH(2) and Gly-Asp-PheNH(2) following incubation of the peptides in acidic and alkaline solution. At pH 2, the dominant decomposition products resulted from cleavage of the peptide backbone amide bonds to yield the respective dipeptides and amino acids. In addition, the cyclic aspartyl succinimide intermediate was identified by its [M+H](+) at m/z = 319 and the MS/MS spectrum exhibiting a simple fragmentation pattern with the [C(8)H(10)N](+)-ion as the principal daughter ion (a(1) of Phe-Asp-GlyNH(2)). Deamidation of the C-terminal amide as well as isomerization and enantiomerization of the Asp residue occurred upon incubation at pH 10. alpha-Asp and the isomeric beta-Asp and most of the diastereomeric forms (corresponding to D/L-Asp) could be separated by CE. All isomers could be identified based on their MS/MS spectra. Peptides with the amino acid sequence Phe-Asp-Gly containing the regular alpha-Asp bond displayed a highly intense b(2) fragment ion and a low abundant y(2) ion. In contrast, the y(2) and a(1) fragment were high abundant daughter ions in the mass spectra of beta-Asp peptides while the b(2) ion exhibited a lower abundance. Differences in the MS/MS spectra of the isomers of the peptides with the sequence Gly-Asp-Phe were obvious but less pronounced. In conclusion, CE-MS/MS proved to be a useful tool to study the decomposition and enantiomerization of peptides including the isomerization of Asp residues, due to the combination of efficient separation of isomers by CE and their identification by MS/MS.  相似文献   

18.
The construction of a sheathless interface for capillary electrophoresis-electrospray ionization mass spectrometry (CE-ESI-MS), for operation with a Z-Spray source on a Micromass Quattro-LC triple quadrupole mass spectrometer is described. Designing the interface involved machining a probe compatible with the setup already in place on the mass spectrometer, i.e., MegaFlow-Z ESI. The probe was made of Lexan with the same dimensions as the ESI probe supplied with the instrument. The electrical connection at the electrospray end of the CE capillary was made possible by gold-coating (sheathless CE-ESI-MS). The probe design as well as the electrical and power supply requirements are described in detail. Experiments were performed using this interface, and CE separations of mixtures containing pmole and sub-pmole amounts of peptides were monitored by on-line MS. For a standard peptide mixture (10(-4) M), separation efficiency was typically characterized by N > 10(4) theoretical plates with S/N > 400. Using the same experimental setup, it was also possible to conduct on-line CE-ESI-tandem MS (MS/MS) experiments on the same peptide mixture, and to determine the sequence of the peptides. MS/MS scan functions for different precursor ions were used either alternately or sequentially and the results from both methods were compared. The possibility of peptide mass mapping was explored, and CE-ESI-MS results were obtained for the digestion products of equine myoglobin. Separation efficiencies and S/N values were similar to those obtained for standard peptides. A complete map of the digestion products was obtained.  相似文献   

19.
Fritless SPE on‐line coupled to CE with UV and MS detection (SPE‐CE‐UV and SPE‐CE‐MS) was evaluated for the analysis of opioid peptides. A microcartridge of 150 μm id was packed with a C18 sorbent (particle size > 50 μm), which was retained between a short inlet capillary and a separation capillary (50 μm id). Several experimental parameters were optimized by SPE‐CE‐UV using solutions of dynorphin A (DynA), endomorphin 1 (End1), and methionine‐enkephaline (Met). A microcartridge length of 4 mm was selected, sample was loaded for 10 min at 930 mbar and the retained peptides were eluted with 67 nL of an acidic hydro‐organic solution. Using SPE‐CE‐MS, peak area and migration time repeatabilities for the three opioid peptides were 12–27% and 4–5%, respectively. SPE recovery was lower for the less hydrophobic DynA (22%) than for End1 (66%) and Met (78%) and linearity was satisfactory in all cases between 5 and 60 ng/mL. The LODs varied between 0.5 and 1.0 ng/mL which represent an enhancement of two orders of magnitude when compared with CE‐MS. Cerebrospinal fluid (CSF) samples spiked with the opioid peptides were analyzed to demonstrate the applicability to biological samples. Peak area and migration time repeatabilities were similar to the standard solutions and the opioid peptides could be detected down to 1.0 ng/mL.  相似文献   

20.
On-line capillary electrophoresis (CE) separations are shown for a synthetic peptide mixture and a tryptic digest of human hemoglobin in an uncoated fused-silica capillary with detection using atmospheric pressure ionization mass spectrometry (API-MS). The CE system utilized a 1-m capillary column of either 75- or 100-microns I.D. These somewhat larger inside diameters allow higher sample capacities for MS detection and the 1-m length facilitates connecting the CE column to the liquid junction-ion spray interface and MS system. Low volatile buffer concentrations (15-20 mM) of ammonium acetate or ammonium formate, and high organic modifier content (5-50%) of methanol or acetonitrile facilitates ionization under electrospray conditions. This study shows that peptides separated by CE may be transferred to the API-MS system through a liquid junction coupling to the pneumatically assisted electrospray (ion spray) interface at low buffer pH when the electroosmotic flow is low (0-0.04 microliter/min). CE-MS as described herein is facilitated by features in modern CE instrumentation including robotic cleaning and pressurization of the capillary inlet. The latter is particularly useful for repetitive rinsing and conditioning of the capillary column between analyses in addition to continuous 'infusion' of sample to the mass spectrometer for tuning purposes. In addition to facile molecular weight determination, amino acid sequence information for peptides may be obtained by utilizing on-line tandem MS. After the tryptic digest sample components enter the API-MS system, the molecular ion species of individual peptides may be focussed and transmitted into the collision cell of the tandem triple quadrupole mass spectrometer. Collision-induced dissociation of protonated peptide molecules yielded structural information for their characterization following injection of 10 pmol of a tryptic digest from human hemoglobin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号