首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
High-speed counter-current chromatography (HSCCC) using the type-J coil planet centrifuge was applied to compositional analysis of tea catechins and separation of other food-related polyphenols. The HSCCC separation of nine different standard compounds and those from extracts of commercial tea leaves was performed with a two-phase solvent system composed of tert-butyl methyl ether-acetonitrile-0.1% aqueous trifluoroacetic acid (TFA) (2:2:3, v/v/v) by eluting the upper organic phase at a flow rate of 2 ml/min. The main compounds in the extract of non-fermented green tea were found to be monomeric catechins, their galloylated esters and caffeine. In addition to these compounds, oxidized pigments, such as hydrophobic theaflavins (TFs) and polar thearubigins (TRs) were also separated and detected from the extracts of semi-fermented oolong tea and fermented black tea. Furthermore, several food-related polyphenols, such as condensed catechin oligomers (procyanidins), phenolic acids and flavonol glycosides were clearly separated under the same HSCCC condition. These separation profiles of HSCCC provide useful information about the hydrophobic diversity of these bioactive polyphenols present in various types of teas and food products.  相似文献   

2.
High-speed counter-current chromatography (HSCCC), a separation technique based solely on the partitioning of solutes between two immiscible liquid phases, was applied for the fractionation of technical toxaphene, an organochlorine pesticide which consists of a complex mixture of structurally closely related compounds. A solvent system (n-hexane/methanol/water 34:24:1, v/v/v) was developed which allowed to separate compounds of technical toxaphene (CTTs) with excellent retention of the stationary phase (Sf = 88%). Subsequent analysis of all HSCCC fractions by gas chromatography coupled to electron-capture negative ion mass spectrometry (GC/ECNI-MS) provided a wealth of information regarding separation characteristics of HSCCC and the composition of technical toxaphene. The visualization of the large amount of data obtained from the offline two-dimensional HSCCC–GC/ECNI-MS experiment was facilitated by the creation of a two-dimensional (2D) contour plot. The contour plot not only provided an excellent overview of the HSCCC separation progress, it also illustrated the differences in selectivity between HSCCC and GC. The results of this proof-of-concept study showed that the 2D chromatographic approach involving HSCCC facilitated the separation of CTTs that coelute in unidimensional GC. Furthermore, the creation of 2D contour plots may provide a useful means of enhancing data visualization for other offline two-dimensional separations.  相似文献   

3.
该文建立了大孔树脂-高速逆流色谱分离薇甘菊中黄酮类物质的方法。分离条件为:采用大孔树脂AB-8,洗脱液为50%(v/v)乙醇水溶液,高速逆流色谱溶剂体系为正丁醇-乙酸-水(4:1:5,v/v)。从薇甘菊中分离到4种黄酮类物质:槲皮素-3-O-芸香糖苷(纯度90.2%)、山奈酚-3-O-芸香糖苷(纯度98.55%)、木犀草苷(纯度98.33%)和紫云英苷(纯度99.23%)。建立的大孔树脂-高速逆流色谱方法简单、高效,可扩展应用于从其他植物中分离黄酮类物质。  相似文献   

4.
Isomangiferin was isolated from Cyclopia subternata using a multi-step process including extraction, liquid–liquid partitioning, high-speed counter-current chromatography (HSCCC) and semi-preparative reversed-phase high-performance liquid chromatography (HPLC). Enrichment of phenolic compounds in a methanol extract of C. subternata leaves was conducted using liquid–liquid partitioning with ethyl acetate–methanol–water (1:1:2, v/v). The enriched fraction was further fractionated using HSCCC with a ternary solvent system consisting of tert-butyl methyl ether–n-butanol–acetonitrile–water (3:1:1:5, v/v). Isomangiferin was isolated by semi-preparative reversed-phase HPLC from a fraction containing mostly mangiferin and isomangiferin. The chemical structure of isomangiferin was confirmed by LC–high-resolution electrospray ionization MS, as well as one- and two-dimensional NMR spectroscopy.  相似文献   

5.
Supercritical fluid extraction (SFE) coupled with high‐speed counter‐current chromatography (HSCCC) was successfully used for the extraction and on‐line isolation of the anthocyanidins from the petals of Chaenomeles sinensis in two stages. The SFE parameters were optimized by an orthogonal test, and the solvent systems of SFE and HSCCC were calculated and optimized with the help of a multiexponential function model. In the first stage, the lower phase of the solvent system of n‐butanol/tert‐butyl methyl ether/acetonitrile/0.1% aqueous TFA (0.715:1.0:0.134:1.592, v/v/v/v) was used as both the SFE modifier and the HSCCC stationary phase, after extraction, the extractants were pumped into HSCCC column, and then eluted with the corresponding upper phase to isolate the moderately hydrophobic compounds. In the second stage, the upper phase of the solvent system of n‐butanol/ethyl acetate/acetonitrile/0.1% aqueous TFA (1.348:1.0:0.605:2.156, v/v/v/v) was used as both the SFE modifier and the HSCCC stationary phase, followed by elution with the corresponding lower phase to separate the hydrophobic compounds. With the help of two‐stage SFE/HSCCC, six compounds including delphinidin‐3‐O‐glucoside (Dp3G), cyanidin‐3‐O‐glucoside (Cy3G), peonidin‐3‐O‐glucoside (Pn3G), delphinidin (Dp), peonidin (Pn), and malvidin (Mv) were successfully separated within 300 min. The targeted compounds were identified by UV spectrophotometry, MS, and NMR spectroscopy. This research has opened up great prospects for the industrial application of SFE–HSCCC for the automatic extraction and separation of unstable compounds.  相似文献   

6.
Polar betacyanin pigments together with betaxanthins from ripe cactus fruits of Hylocereus polyrhizus (Cactaceae) were fractionated by means of preparative ion-pair high-speed countercurrent chromatography (IP-HSCCC) also using the elutionextrusion (EE) approach for a complete pigment recovery. HSCCC separations were operated in the classical ‘head-to-tail’ mode with an aqueous mobile phase. Different CCC solvent systems were evaluated in respect of influence and effectiveness of fractionation capabilities to separate the occurring pigment profile of H. polyrhizus. For that reason, the additions of two different volatile ion-pair forming perfluorinated carboxylic acids (PFCA) were investigated. For a direct comparison, five samples of Hylocereus pigment extract were run on preparative scale (900 mg) in 1-butanol–acetonitrile–aqueous TFA 0.7% (5:1:6, v/v/v) and the modified systems tert.-butyl methyl ether–1-butanol–acetonitrile–aqueous PFCA (2:2:1:5, v/v/v/v) using 0.7% and 1.0% trifluoroacetic acid (TFA) or heptafluorobutyric acid (HFBA) in the aqueous phase, respectively. The chemical affinity to the organic stationary CCC solvent phases and in consequence the retention of these highly polar betalain pigments was significantly increased by the use of the more lipophilic fluorinated ion-pair reagent HFBA instead of TFA. The HFBA additions separated more effectively the typical cacti pigments phyllocactin and hylocerenin from betanin as well as their iso-forms. Unfortunately, similar KD ratios and selectivity factors α around 1.0–1.1 in all tested solvent systems proved that the corresponding diastereomers, 15S-type pigments cannot be resolved from the 15R-epimers (iso-forms). Surprisingly, additions of the stronger ion-pair reagent (HFBA) resulted in a partial separation of hylocerenin from phyllocactin which were not resolved in the other solvent systems. The pigments were detected by means of HPLC-DAD and HPLC-electrospray ionization–MS using also authentic reference materials.  相似文献   

7.
Three macrolide antibiotic components – ascomycin, tacrolimus and dihydrotacrolimus – were separated and purified by silver ion high-speed counter-current chromatography (HSCCC). The solvent system consisted of n-hexane–tert-butyl methyl ether–methanol–water (1:3:6:5, v/v) and silver nitrate (0.10 mol/l). The silver ion acted as a π-complexing agent with tacrolimus because of its extra side double bond compared with ascomycin and dihydrotacrolimus. This complexation modified the partition coefficient values and the separation factors of the three components. As a result, ascomycin, tacrolimus and dihydrotacrolimus were purified from 150 mg extracted crude sample with purities of 97.6%, 98.7% and 96.5%, respectively, and yields over 80% (including their tautomers). These results cannot be achieved with the same solvent system but without the addition of silver ion.  相似文献   

8.
High-speed counter-current chromatography (HSCCC) and preparative high-performance liquid chromatography (prep-HPLC) were successively used for the separation of epigallocatechin and flavonoids from Hypericum perforatum L. The two-phase solvent system composed of ethyl acetate–methanol–water (10:1:10, v/v) was used for HSCCC. About 900 mg of the crude extract was separated by HSCCC, yielding 7.8 mg of quercitrin at a purity of over 97%, 12.6 mg of quercetin at a purity of over 93%, and 38.9 mg of a mixture of hyperoside, isoquercitrin and miquelianin constituting over 97% of the fraction. A mixture of epigallocatechin and avicularin pooled from three HSCCC runs, a total amount of 54.3 mg, was further separated by prep-HPLC yielding 23.4 mg of epigallocatechin and 15.3 mg of avicularin each at a purity of over 97%.  相似文献   

9.
A combinative method using high-speed counter-current chromatography (HSCCC) and thin layer chromatography (TLC) as an antioxidant autographic assay was developed to separate antioxidant components from the fruits of Psoralea corylifolia. Under the guidance of TLC bioautography, eight compounds including five flavonoids and three coumarins were successfully separated from the fruits of P. corylifolia by HSCCC with an optimized two-phase solvent system, n-hexane–ethyl acetate–methanol–water (1:1.1:1.3:1, v/v/v/v). The separation produced 5.91 mg psoralen, 6.26 mg isopsoralen, 3.19 mg psoralidin, 0.92 mg corylifol A, and 2.43 mg bavachinin with corresponding purities of 99.5, 99.8, 99.4, 96.4, and 99.0%, as well as three sub-fractions, in a single run from 250 mg ethyl acetate fraction of P. corylifolia extract. Following an additional clean-up step by preparative TLC, 0.4 mg 8-prenyldaidzein (purity 91.7%), 4.18 mg neobavaisoflavone (purity 97.4%) and 4.36 mg isobavachalcone (purity 96.8%) were separated from the three individual sub-fractions. The structures of the isolated compounds were identified by 1H NMR and 13C NMR. The results of antioxidant activity estimation by electron spin resonance (ESR) method showed that psoralidin was the most active antioxidant with an IC50 value of 44.7 μM. This is the first report on simultaneous separation of eight compounds from P. corylifolia by HSCCC.  相似文献   

10.
High‐speed countercurrent chromatography (HSCCC) combined with biphasic chiral recognition was successfully applied to the resolution of phenylsuccinic acid enantiomers. d ‐Isobutyl tartrate and hydroxypropyl‐β‐cyclodextrin were employed as lipophilic and hydrophilic selectors dissolved in the organic stationary phase and aqueous mobile phase, respectively. The two‐phase solvent system was made up of n‐hexane/methyl tert‐butyl ether/water (0.5:1.5:2, v/v/v). Impacts of the type and concentration of chiral selectors, the pH value of the aqueous phase solution as well as the temperature on the separation efficiency were investigated. By means of preparative HSCCC, pure enantiomer was obtained by separating 810 mg of racemate with a purity >99.5% and a recovery rate between 82 and 85%. The experimental results indicate that biphasic recognition HSCCC provide a promising means for efficient separation of racemates.  相似文献   

11.
In this paper, high‐speed counter‐current chromatography (HSCCC), assisted with ESI‐MS, was first successfully applied to the preparative separation of three macrolide antibiotics, brefeldin A (12.6 mg, 99.0%), 7′‐O‐formylbrefeldin A (6.5 mg, 95.0%) and 7′‐O‐acetylbrefeldin A (5.0 mg, 92.3%) from the crude extract of the microbe Penicillium SHZK‐15. Considering the chemical nature and partition coefficient (K) values of the three target compounds, a two‐step HSCCC isolation protocol was developed in order to obtain products with high purity. In the two‐step method, the crude ethyl acetate extract was first fractionated and resulted in two peak fractions by HSCCC using solvent system n‐hexane/ethyl acetate/methanol/water (HEMWat) (3:7:5:5 v/v/v/v), then purified using solvent systems HEMWat (3:5:3:5 v/v/v/v) and HEMWat (7:3:5:5 v/v/v/v) for each fraction. The purities and structures of the isolated compounds were determined by HPLC, X‐ray crystallography, ESI‐MS and NMR. The results demonstrated that HSCCC is a fast and efficient technique for systematic isolation of bioactive compounds from the microbes.  相似文献   

12.
Supercritical fluid extraction (SFE) coupled with high‐speed counter‐current chromatography (HSCCC) was successfully used for the extraction and online isolation of the unstable compounds from Rosa damascene in a single extraction and separation operation in two stages. The solvent systems of SFE/HSCCC were optimized with the help of multiexponential function model. At the first stage, the upper phase of the solvent system of n‐butanol–tert‐butyl methyl ether–acetonitrile–0.1% aqueous TFA (1.7:1.0:0.8:4.0, v/v/v/v) was used as both the SFE entrainer and the HSCCC stationary phase, and the target compounds were eluted with the corresponding lower phase to separate the hydrophobic compounds. At the second stage, the upper phase of the solvent system of n‐hexane–ethyl acetate–methanol–water (3.2:1.0:2.8:2.6, v/v/v/v) was used as both the SFE entrainer and the HSCCC stationary phase, followed by elution with the corresponding lower phase to separate the moderate hydrophobic compounds. Six compounds including formononetin, delphinidin, cyaniding, 5,6,4′‐trihydroxy‐7,8‐dimethoxy flavone, 5,3′‐dihydroxy‐7,8‐dimethoxy flavone, and 5‐hydroxy‐6,7,8,3′,4′‐pentamethoxy flavone were successfully separated in one extraction–separation operation within 300 min. The targeted compounds were identified by MS and NMR spectroscopy. This research has opened up great prospects for industrial application of SFE/HSCCC to the extraction and separation of unstable compounds.  相似文献   

13.
Xu S  Sun Y  Jing F  Duan W  Du J  Wang X 《色谱》2011,29(12):1244-1248
采用硅胶柱色谱结合高速逆流色谱法分离纯化了荷花中3种黄酮类化合物。荷花粗提物先经过硅胶柱色谱初步分离,得到黄酮含量高的组分,再经过高速逆流色谱分离,以乙酸乙酯-乙醇-水-乙酸(4:1:5:0.025, v/v/v/v)为两相溶剂系统,上相为固定相,下相为流动相,在主机转速800 r/min、流速2.0 mL/min、检测波长254 nm条件下,从150 mg样品中一次性分离制备得到6.1 mg槲皮素-3-O-β-D-葡萄糖醛酸苷(I), 14.8 mg杨梅素-3-O-β-D-葡萄糖苷(II)和20.2 mg紫云英苷(III),经高效液相色谱检测其纯度分别为97.0%、95.4%、96.3%,并通过质谱和核磁共振氢谱、碳谱鉴定各化合物的结构。该方法简便、快速、节省溶剂,可以对荷花中的黄酮类化合物进行快速有效的分离纯化,具有较好的实用价值,为荷花资源的进一步开发应用提供了参考依据。  相似文献   

14.
A high-speed counter-current chromatography (HSCCC) method was established for the preparative separation of three sesquiterpenoid lactones from Eupatorium lindleyanum DC. The two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:4:2:3, v/v/v/v) was selected. From 540 mg of the n-butanol fraction of Eupatorium lindleyanum DC., 10.8 mg of 3β-hydroxy-8β-[4'-hydroxy-tigloyloxy]-costunolide, 17.9 mg of eupalinolide A and 19.3 mg of eupalinolide B were obtained in a one-step HSCCC separation, with purities of 91.8%, 97.9% and 97.1%, respectively, as determined by HPLC. Their structures were further identified by ESI-MS and 1H-NMR.  相似文献   

15.
This work concentrates on a chiral separation technology named biphasic recognition applied to resolution of α-cyclohexylmandelic acid enantiomers by high-speed counter-current chromatography (HSCCC). The biphasic chiral recognition HSCCC was performed by adding lipophilic (−)-2-ethylhexyl tartrate in the organic stationary phase and hydrophilic hydroxypropyl-β-cyclodextrin in the aqueous mobile phase, which preferentially recognized the (−)-enantiomer and (+)-enantiomer, respectively. The two-phase solvent system composed of n-hexane-methyl tert-butyl ether–water (9:1:10, v/v/v) with the above chiral selectors was selected according to the partition coefficient and separation factor of the target enantiomers. Important parameters involved in the chiral separation were investigated, namely the types of the chiral selectors (CS); the concentration of each chiral selector; pH of the mobile phase and the separation temperature. The mechanism involved in this biphasic recognition chiral separation by HSCCC was discussed. Langmuirian isotherm was employed to estimate the loading limits for a given value of chiral selectors. Under optimum separation conditions, 3.5–22.0 mg of α-cyclohexylmandelic acid racemate were separated using the analytical apparatus and 440 mg of racemate was separated using the preparative one. The purities of both of the fractions including (+)-enantiomer and (−)-enantiomer from the preparative CCC separation were over 99.5% determined by HPLC and enantiomeric excess reached 100% for the (±)-enantiomers. Recovery for the target compounds from the CCC fractions reached 85–88% yielding 186 mg of (+)-enantiomer and 190 mg of (−)-enantiomer. The overall experimental results show that the HSCCC separation of enantiomer based on biphasic recognition, in which only if the CSs involved will show affinity for opposite enantiomers of the analyte, is much more efficient than the traditional monophasic recognition chiral separation, since it utilizes the cooperation of both of lipophilic and hydrophilic chiral selectors.  相似文献   

16.
The first preparative separation of two benzoxazinoids, (2R)-2-O-beta-d-glucopyranosyl-2H-1,4-benzoxazin-3(4H)-one (HBOA-Glc) and (2R)-2-O-beta-d-glucopyranosyl-4-hydroxy-2H-1,4-benzoxazin-3(4H)-one (DIBOA-Glc), by means of high-speed counter-current chromatography (HSCCC) from the n-butanol extract of Acanthus ilicifolius L. is presented. The two-phase solvent system containing ethyl acetate-n-butanol-0.5%NH(4)OH (2:3:5, v/v/v, system B) was selected for the one-step HSCCC separation of HBOA-Glc and DIBOA-Glc according to the partition coefficient values (K) for target compounds and the separation factor (alpha) between the two target compounds. In the one-step HSCCC separation using solvent B, from 100mg n-butanol extract of A. ilicifolius, 6.3 mg HBOA-Glc and 6.8 mg DIBOA-Glc were isolated with purities of 90.3% and 80.2%, respectively. In order to obtain the two target compounds with higher purity, a second separation process was developed comprising two steps. In the two-step separation, the sample was first pre-purified by HSCCC using ethyl acetate-n-butanol-water (2:3:5, v/v/v, system A) solvent system and then purified using solvent system B. A 100-mg amount of the n-butanol extracts of A. ilicifolius was separated to yield 5.8 mg of HBOA-Glc and 4.8 mg of DIBOA-Glc with purities of 97.1% and 94.8%, respectively, which were directly used for NMR analyses.  相似文献   

17.
High-speed counter-current chromatography (HSCCC) was applied to the isolation and purification of geniposide from Gardenia jasminoides Ellis. Analytical HSCCC was used for the preliminary selection of a suitable solvent system composed of ethyl acetate-n-butanol-water (2:1:3, v/v/v). According to the above solvent system, preparative HSCCC was successfully performed with the optimal solvent system composed of ethyl acetate-n-butanol-water (2:1.5:3, v/v/v) yielding 389 mg of geniposide at over 98% purity from 1g of the partially purified extract with 38.9% recovery in a one-step separation.  相似文献   

18.
Five phenylethanoid glycosides (PhGs), forsythoside B, verbascoside, alyssonoside, isoverbascoside, and leucosceptoside B, were isolated and purified from Lamiophlomis rotata (Benth.) Kudo by high‐speed counter‐current chromatography (HSCCC) combined with macroporous resin (MR) column separation. In the present study, the two‐phase solvent system composed of ethyl acetate/n‐butanol/water (13:3:10, v/v/v) was used for HSCCC separation. A total of 27 mg of forsythoside B, 41 mg of verbascoside, 29 mg of alyssonoside, 23 mg of isoverbascoside, and 13 mg of leucosceptoside B with purities of 97.7, 99.2, 99.5, 99.3, and 97.3%, respectively, were obtained in a one‐step separation within 4 h from 150 mg of crude extract. The recoveries of the five PhGs after MR‐HSCCC separation were 74.5, 76.5, 72.5, 76.4, and 77.0%, respectively. The chemical structures of all five compounds were identified by 1H and 13C NMR spectroscopy.  相似文献   

19.
Red Delicious apple pomace was produced at laboratory scale with a domestic blender and different non-conventional extraction techniques were performed to isolate phenolic compounds, such as ultrasound-assisted extraction (UAE), ultraturrax extraction (UTE), accelerated solvent extraction (ASE) and pulsed electric field (PEF) extraction pre-treatment. Total phenolic content (TPC) was determined by Folin–Ciocalteu assay. Phloridzin, the main phenolic compound in apples, was determined by chromatographic analysis Q-TOF-LC/MS. The results obtained with these techniques were compared in order to identify the most efficient method to recover polyphenols. The highest value of TPC (1062.92 ± 59.80 µg GAE/g fresh apple pomace) was obtained when UAE was performed with EtOH:H2O (50:50, v/v), while ASE with EtOH:H2O (30:70, v/v) at 40 °C and 50% of flush was the most efficient technique in the recovery of phloridzin. The concentration of the main phenolic compounds ranged from 385.84 to 650.56 µg/g fresh apple pomace. The obtained results confirm that apple pomace represents an interesti-ng by-product, due to the presence of phenolic compounds. In particular, phloridzin could be considered a biomarker to determine the quality of numerous apple products. Therefore, this research could be a good starting point to develop a value-added product such as a functional food or nutraceutical.  相似文献   

20.
Enrichment of the anti‐tumor compound barbigerone along with a rotenoid derivative from Millettia pachycarpa Benth. was performed by a two‐step high‐speed counter‐current chromatography (HSCCC) separation process. In the first step, 155.8 mg of target fraction (Fra6) was obtained from 400 mg ethyl acetate extract of M. pachycarpa Benth. with an increase in barbigerone from 5.1 to 13% via HSCCC using a solvent system of n‐hexane–ethyl acetate–methanol–water (5:4:5:3, v/v) under normal phase head to tail elution. HSCCC was repeated to eliminate the major contaminant in this initial fraction 6. After a separation time of 65 min, 22.1 mg barbigerone of 87.7% purity was obtained from Fra6 with the ternary solvent system of n‐hexane–methanol–water (2:2:1, v/v) under normal phase elution. Finally, preparative HPLC was employed for the further isolation of barbigerone and the rotenoid derivative. The structures were confirmed by ESI‐MS, 1H NMR and 13C NMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号