首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An optimisation of derivatisation methods for the simultaneous determination of endocrine disrupting chemicals (EDCs) in water by solid-phase extraction (SPE) gas chromatography-mass spectrometry (GC-MS) was developed in this study. Seven highly potent EDCs including 17β-estradiol (E2), estrone (E1), 16α-hydroxyestrone, 17α-ethynylestradiol (EE2), bisphenol A, 4-nonylphenol and 4-tert-octylphenol were selected as the target compounds. The SPE technique, followed by the derivatisation with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) was used for the extraction recoveries of compounds from water and effluent samples. The stability of the silylation derivatives under different reaction conditions was investigated. The combined use of BSTFA and pyridine as derivatisation reagents, together with the use of hexane as the final solvent, was preferred in order to generate more stable derivatives of EDCs. The relative response factor (RRF) of all derivatives except that of EE2 was stable 120 h after derivatisation. The addition of pyridine as derivatisation reagent with BSTFA can prevent the conversion of EE2 to other products during the reaction. Several parameters that may affect the recovery of EDCs, such as the SPE flow rate, and water properties including aquatic colloid content and surfactant concentration were tested. The results showed that the flow rate (1-25 mL min−1), colloid concentration (0-50 mg L−1) and surfactants concentration (0-10 μg L−1) did not cause significant decrease in the EDCs recovery.  相似文献   

2.
Zhao J  Tan D  Chelvi SK  Yong EL  Lee HK  Gong Y 《Talanta》2010,83(1):286-290
Rifamycin-capped (3-(2-O-β-cyclodextrin)-2-hydroxypropoxy)-propylsilyl-appended silica particles (RCD-HPS), a new type of substituted β-cyclodextrin-bonded chiral stationary phase (CSP) for high-performance liquid chromatography (HPLC), have been synthesized by the treatment of bromoacetate-substituted-(3-(2-O-β-cyclodextrin)-2-hydroxypropoxy)-propylsilyl-appended silica particles (BACD-HPS) with rifamycin SV in anhydrous acetonitrile. The stationary phase is characterized by means of elemental analysis and Fourier-transform infrared spectroscopy. This new CSP has a chiral selector with two recognition sites: rifamycin and β-cyclodextrin (β-CD). The chromatographic behavior of RCD-HPS was studied with several disubstituted benzenes and some chiral drug compounds under reversed-phase HPLC mobile phase conditions. The results show that RCD-HPS has excellent selectivity for the separation of aromatic positional isomers and enantiomers of chiral compounds due to the cooperative functioning of rifamycin and β-CD.  相似文献   

3.
A native β-cyclodextrin (β-CD) stationary phase was prepared by covalently bonding β-CD on silica particles via Huisgen [3 + 2] dipolar cycloaddition between the organic azide and terminal alkyne, the so-called Click chemistry. The resulting β-CD bonded silica (Click β-CD) was characterized by FT-IR, solid state 13C cross polarization/magic-angle spinning (CP/MAS) NMR and elemental analyses, which proved the successful immobilization of β-CD on the silica support with Click chemistry. The retentive properties of Click β-CD were investigated under hydrophilic interaction liquid chromatography (HILIC) mode in different mobile phase conditions with a set of polar compounds including nucleosides, organic acids and alkaloids. The effects of water content, concentration of the salt and pH of the buffer solution on the retention time were studied and the results demonstrated the typical retention behavior of HILIC on Click β-CD. Separation of very polar components, such as nucleosides and oligosaccharides, and chiral separation under HILIC mode were successfully achieved. In addition, Click β-CD was chromatographically evaluated with a set of flavone glycosides. The retention curves depending on the mobile phase of acetonitrile content were “U” curves, which is an indication of HILIC/RPLC mixed-mode retention behavior. The difference of the separation selectivity between HILIC and RPLC was described as orthogonality by using geometric approach and the orthogonality reached 69.4%. The mixed-mode HPLC properties and excellent orthogonality demonstrated the flexibility in HPLC methods development and great potential in two-dimensional liquid chromatography separation.  相似文献   

4.
A high performance liquid chromatographic method (HPLC) for the simultaneous determination of 4-nonylphenol, bisphenol A, 17α-ethinylestradiol and three endogenic estrogens including 17α-estradiol, 17β-estradiol, estriol in urine sample, based on precolumn derivatization with p-nitrobenzoyl chloride, is presented in this paper. The estrogens mentioned above in urine were firstly hydrolyzed with 0.6 mol/l HCl, and then enriched and cleaned-up by ENV-18 C18 solid phase extraction (SPE) column. The estrogens on column were eluted with dichloromethane, and the eluent was evaporated to dryness under gentle nitrogen flow. The residue was allowed to react with p-nitrobenzoyl chloride at 25 °C for 30 min. Separation was performed on a C18 column with gradient elution using acetonitrile and water as mobile phase. A fluorescence detection system was used to detect the fluorescent derivatization products. The detection limit of the method was 2.7 μg/l for bisphenol A and 17β-estradiol, 2.9 μg/l for 4-nonylphenol, 4.6 μg/l for 17α-estradiol and 17α-ethinylestradiol and 8.3 μg/l for estriol, respectively. The relative standard deviations (R.S.D.) ranged from 1.29 to 4.52% and the recoveries ranged from 85.5 to 99.9%. The method was applied to the determination of those six estrogens mentioned above in human urine samples collected from 20 healthy volunteers (aged 21-29). Bisphenol A (BPA) and 4-nonylphenol (NP) were detected with average contents of 1.22 ± 1.38 mg/l and 0.38 ± 0.77 mg/l in 10 male urine samples and 1.29 ± 1.22 mg/l and 0.05 ± 0.05 mg/l in 10 female urine samples, respectively. 17α-ethinylestradiol (α-EE2) was also detected with average contents of 0.13 ± 0.41 mg/l and 0.06 ± 0.15 mg/l in male and female urine samples, respectively.  相似文献   

5.
In this study, a method for assessing the occurrence of trace amounts of 12 representative estrogenic compounds in sewage and surface waters was developed. The selected substances were the phytoestrogens daidzein, genistein and biochanin A, the alkylphenols bisphenol A and 4-nonylphenol, the natural hormones 17β-estradiol, estrone, estriol and the synthetic hormone 17α-ethynylestradiol and the mycoestrogens zearalenone and two of its metabolites (α-zearalanol and β-zearalanol). The procedure consists in solid phase extraction (SPE) performed with OASIS cartridges followed by liquid chromatography coupled with tandem mass spectrometry (LC-MS-MS). Recoveries were all above 80% for each analyzed aqueous matrices. The developed method was applied to verify the occurrence of endocrine disrupters in environmental samples of sewage influents and effluents of an Italian STP. Phytoestrogens were present in effluents at concentrations ranging from 3 to 83 ng/l, whereas the levels detected for alkylphenols were in the range 13-36 ng/l for bisphenol A and up to 1 μg/l for nonylphenol. Estrogens and zeranols were determined at levels below 30 ng/l. Analysis of a river (Tiber) receiving effluent waters revealed high quantities of bisphenol A (15-29 ng/l) and nonylphenol (up to 1.2 μg/l), whereas the presence of all the other compounds were at levels of few ng/l.  相似文献   

6.
Direct capillary zone electrophoretic methods were developed for the separation of the enantiomers of unnatural β-substituted tryptophan analogues such as erythro- and threo-β-methyl-, β-2-propyl-, β-3-pentyl-, β-phenyl- and β-2,5-dimethoxyphenyltryptophan. Cyclodextrins (CDs) were chosen as chiral selectors because of their favorable properties (stability, commercial availability, low cost, UV transparency, inertness, etc.). Capillary zone electrophoresis was carried out using sulfopropylated-α-CD (SP2-α-CD), sulfopropylated-β-CD (SP2-β-CD) both with a degree of substitution of 2 moles/mole cyclodextrin, and sulfopropylated-β-CD (SP4-β-CD) with a degree of substitution of 4 moles/mole β-cyclodextrin. With this technique all compounds investigated are baseline resolved using different background electrolytes and chiral additives. The elution sequence was determined in all cases.  相似文献   

7.
《Analytica chimica acta》2004,507(2):219-227
A rapid and specific multiresidue method was developed to perform screening and confirmation of 15 anabolics steroids in bovine hair, namely: dienestrol, DES, hexestrol, 17α- and 17β-estradiol, 17α- and 17β-19-nortestosterone, 17α- and 17β-boldenone, testosterone (β) and epitestosterone (α), ethynylestradiol, α-methyltestosterone, and α- and β-Zearalanol.After methanolic and solid-phase extraction, trimethylsilyl derivatization (TMS) was performed and the derivatized extracts submitted to GC-MS-MS analysis. TMS derivatives of the studied hormones yielded specific MS-MS fragmentation with a high abundance for ions selected in the screening procedure.Validation was performed regarding qualitative parameters: decision limit (CCα), detection capability (CCβ) and specificity. For confirmation, European union criteria 2002/657/EC were considered. Detection capability ranged between 1.0 and 10.0 ng g−1 depending on the compound.  相似文献   

8.
An isocratic HPLC method for the determination with screening purposes of anabolic androgenic steroids (AASs: fluoxymesterone, boldenone, nortestosterone, metandrostenolone, norethindrone, methyltestosterone and bolasterone), used as growth promoting agents, in finishing pig feed samples has been developed and validated. The separation was achieved by using a reversed-phase Chromolith RP-18e column at controlled temperature, UV-detection at 245 nm and epitestosterone as internal standard. The method development involved optimization of different aqueous-organic mobile phases using methanol or acetonitrile as organic modifiers, flow-rate and temperature. The optimum separation for these compounds was achieved at 40 °C using ultrapure water:acetonitrile (71:29, v/v) as mobile phase and 3 mL min−1 flow-rate, allowing the separation of AASs with baseline resolution in about 15 min. The optimized method was applied to the analysis of AASs in finishing pig feed samples. Prior to HPLC, sample preparation procedure was used by leaching using acetonitrile, saponification in a basic medium and solid-phase extraction using polymeric Abselut Nexus cartridges. Method validation has been carried out according to the European Commission Decision 2002/657/EC. The extraction efficiencies, decision limits (CCα) and detection capabilities (CCβ) for these compounds were in the range 83-96%, 27-37 and 32-47 μg kg−1 range, respectively. The within-laboratory reproducibility at 1, 1.5 and 2 CCβ concentration levels were smaller than 13, 10 and 8%, respectively. Finally, the proposed method was successfully applied to nine different kinds of animal feed.  相似文献   

9.
Adrenal was believed to affect the prostate tumor tissue growth by its secretion of adrenal androgens. However, the mechanisms regulating these effects were not fully understood. In this work, a sensitive and specific method for the determination of 15 steroids in blood via gas chromatography-mass spectrometry in selective ion storage detection mode was established to evaluate the impact of emasculation on adrenal steroids metabolism. Steroids were isolated by solid-phase extraction using Oasis HLB cartridge, and then derivated with heptafluorobutyric anhydride before analysis. The limits of detection were between 0.15 and 1.0 ng/mL and limits of quantification were between 0.62 and 2.6 ng/mL. The recoveries of steroids were above 83%, and both the intra-day and inter-day precisions (RSD%) were lower than 8%. Pregnenolone, progesterone, 17α-hydroxyprogesterone (17αP), 17α-hydroxypregnenolone (17αH), dehydroepiandrosterone (DHEA), estrone, 17β-estradiol, dihydrotestosterone (DHT), testosterone (T), 4-androstenedione (4-A), 1,4-androstadiene-3,17-dione, 11-deoxycortisol, 11-deoxycorticosterone, cortisol and aldosterone were quantified in 156 major male SD rats at 0, 1, 2, 4, 7 days, 2, 4, 6, 8, 10, 12, 14, and 16 weeks following emasculation. T and DHT decreased by 86.2% and 73.4%, respectively in the first 7 days following emasculation, but adrenal androgens (DHEA, 4-A) stabled at the normal level accordingly. Adrenal androgens and their precursors (17αH, 17αP) increased from the 2nd week along with the increase of androgens and the decrease of mineralocorticoids. These facts revealed that adrenal possibly enhanced its function of producing adrenal androgens from the 2nd week responding to the low androgens level induced by emasculation.  相似文献   

10.
Tianhe Jiang  Baolin Chu  Wei Yan 《Talanta》2009,78(2):442-447
A molecularly imprinted polymer (MIP) has been synthesized by a thermo-polymerization method using methacrylic acid (MAA) as functional monomer, ethylene glycol dimethacrylate (EGDMA) as cross-linker, acetonitrile as porogenic solvent, and 17β-estradiol as template. The MIP showed obvious affinity for 17β-estradiol in acetonitrile solution, which was confirmed by absorption experiments. After optimization of molecularly imprinted solid-phase extraction (MISPE) conditions, three structurally related estrogenic compounds (17β-estradiol, estriol, and diethylstilbestrol) were used to evaluate the selectivity of the MIP cartridges. The MIP cartridges exhibited highly selectivity for E2, the recoveries were 84.8 ± 6.53% for MIPs and 19.1 ± 1.93% for non-imprinted polymer (NIP) cartridges. The detection and quantification limits correspond to 0.023 and 0.076 mg L−1. Furthermore, the MISPE methods were used to selectively extract E2 from fish and prawn tissue prior to HPLC analysis. This MISPE-HPLC procedure could eliminate all matrix interference simultaneously and had good recoveries (78.3-84.5%).  相似文献   

11.
A novel enantioselective polymethacrylate-based monolithic column for capillary electrochromatography was prepared by ring-opening reaction of epoxy groups from poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith with a novel β-cyclodextrin derivative bearing 4-dimethylamino-1,8-naphthalimide functionalities. Conditions for the ring-opening reaction with respect to different reaction parameters were thoroughly optimized to obtain high electroosmotic flow, separation efficiency and enantioselectivity for the analytes. The nonaqueous mobile phase composition regarding acetonitrile–methanol ratio and the concentration of electrolyte were examined to manipulate the hydrophobic inclusion and anion-exchange interaction between the analytes and chiral stationary phase. It was observed that in addition to β-cyclodextrin cavity, the electrostatic interaction exhibited pronounced influence on the enantioseparation of acidic analytes. Acidic enantiomers (ibuprofen and naproxen) could be separated with separation factor (α) values up to 1.08 and a maximum separation efficiency of 86 000 plates/m could be achieved.  相似文献   

12.
The hollow fiber-based stirring extraction bar liquid–liquid microextraction was applied to the extraction of hormones, including 17-α-ethinylestradiol, 17-α-estradiol, estriol, 17-β-estradiol, estrone, 17-α-hydroxyprogesterone, medroxyprogesterone, progesterone and norethisterone acetate, in milk. The present method has the advantages of both hollow fiber-liquid phase microextraction and stirring bar sorptive extraction. The stirring extraction bar was used as both the stirring bar of microextraction, and extractor of the analytes, which can make extraction, clean-up and concentration be carried out in one step. When the extraction was completed, the stirring extraction bar was easy isolated from the extraction system with the magnet. Several experimental parameters, including the type of extraction solvent, the number of hollow stirring extraction bar, extraction time, stirring speed, ionic strength, and desorption conditions were investigated and optimized. The analytes in the extract were derived and determined by gas chromatography mass spectrometry. Under optimal experimental conditions, good linearity was observed in the range of 0.20–20.00 ng mL−1. The limits of detection and quantification were in the range of 0.02–0.06 ng mL−1 and 0.07–0.19 ng mL−1, respectively. The present method was applied to the analysis of milk samples, and the recoveries of analytes were in the range of 93.6–104.6% with the relative standard deviations ranging from 1.6% to 6.2% (n = 5). The results showed that the present method was a rapid and feasible method for the determination of hormones in milk samples.  相似文献   

13.
A new CE method has been developed for the simultaneous separation of a group of parent phthalates. Due to the neutral character of these compounds, the addition of several bile salts as surfactants (sodium cholate (SC), sodium deoxycholate (SDC), sodium taurodeoxycholate (STDC), sodium taurocholate (STC)) to the separation buffer was explored showing the high potential of SDC as pseudostationary phase. However, the resolution of all the phthalates was not achieved when employing only this bile salt as additive, being necessary the addition of neutral cyclodextrins (CD) and organic modifiers to the separation media. The optimized cyclodextrin modified micellar electrokinetic chromatography (CD-MEKC) method consisted of the employ of a background electrolyte (BGE) containing 25 mM β-CD-100 mM SDC in a 100 mM borate buffer (pH 8.5) with a 10% (v/v) of acetonitrile, employing a voltage of 30 kV and a temperature of 25 °C. This separation medium enabled the total resolution of eight compounds and the partial resolution of two of the analytes, di-n-octyl phthalate (DNOP) and diethyl hexyl phthalate (DEHP) (Rs ~ 0.8), in only 12 min. The analytical characteristics of the developed method were studied showing their suitability for the determination of these compounds in commercial perfumes. In all the analyzed perfumes the most common phthalate was diethyl phthalate (DEP) that appeared in ten of the fifteen analyzed products. Also dimethyl phthalate (DMP), diallyl phthalate (DAP), dicyclohexyl phthalate (DCP), and di-n-pentyl phthalate (DNPP) were found in some of the analyzed samples.  相似文献   

14.
The main focus of this study was to explore the capability of native α-cyclodextrin, β-cyclodextrin and γ-cyclodextrin and their hydroxypropyl derivatives for host-guest interaction with 7,8-dimethoxyflavone, selected steroids (estetrol, estriol, estradiol, estrone, testosterone, cortisone, hydrocortisone, progesterone and 17α-hydroxyprogesterone) and polycyclic aromatic hydrocarbons (toluene, naphthalene, 1,8-dimethylnaphthalene, 1-acenaphthenol, acenaphthylene and acenaphthene) under reversed-phase liquid-chromatography conditions. The study revealed that native cyclodextrins interact more efficiently with the analytes investigated than do their hydroxypropyl counterparts. In the low-temperature region, enormously high ratios were observed for polycyclic aromatic hydrocarbons, particularly 1,8-dimethylnaphthalene, acenaphthene and acenaphthylene chromatographed on a β-cyclodextrin-modified mobile phase. In such a case, the retention times of the polycyclic aromatic hydrocarbons were strongly reduced (e.g. from 127 to 1.2 min for 1,8-dimethylnaphthalene) and were close to the hold-up time of the high-performance liquid chromatography (HPLC) system (0.7 min). Moreover, chiral separation of 1-acenaphthenol optical isomers was observed and the elution order of the enantiomers was determined. Within the steroids group, strong interaction was observed for estradiol and testosterone. The results of cluster analysis indicate that β-cyclodextrin as well as γ-cyclodextrin and its hydroxypropyl derivative can be most effective mobile-phase additives under reversed-phase HPLC conditions for 3D-shape-recognition-driven separation, performed at subambient and elevated temperatures, respectively.  相似文献   

15.
The chiral separation of various analytes (dichlorprop, mecoprop, ibuprofen, and ketoprofen) was demonstrated with different cyclodextrins as mobile phase additives in open-tubular liquid chromatography using a stationary pseudophase semipermanent coating. The stable coating was prepared by a successive multiple ionic layer approach using poly(diallyldimethylammonium chloride), polystyrene sulfonate, and didodecyldimethyl ammonium bromide. Increasing concentrations (0–0.2 mM) of various native and derivatized cyclodextrins in 25 mM sodium tetraborate (pH 9.2) were investigated. Chiral separation was achieved for the four test analytes using 0.05–0.1 mM β-cyclodextrin (resolution between 1.11 and 1.34), γ-cyclodextrin (resolution between 0.78 and 1.27), carboxymethyl-β-cyclodextrin (resolution between 1.64 and 2.59), and 2-hydroxypropyl-β-cyclodextrin (resolution between 0.71 and 1.76) with the highest resolutions obtained with 0.1 mM carboxymethyl-β-cyclodextrin. %RSD values were <10%. This is the first demonstration of chiral open-tubular liquid chromatography using achiral chromatographic coatings and cyclodextrins as mobile phase additives.  相似文献   

16.
Continuous disposal of endocrine-disrupting compounds (EDCs) into the environment can lead to serious human health problems and can affect plants and aquatic organisms. The determination of EDCs in water has become an increasingly important activity due to our increased knowledge about their toxicities, even at low concentration. The EDCs in water samples from the reclaimed water plant of Tianjin, northern China, were identified by gas chromatography (GC)–mass spectrometry (MS). Important and contrasting EDCs including estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), 4-tert-octylphenol (OP), 4-nonylphenol (NP), bisphenol A (BPA), di-n-butyl phthalate (DnBP), diisobutyl phthalate (DIBP), and di(2-ethylhexyl)phthalate (DEHP) were selected as the target compounds. Concentrations of steroid hormones, alkylphenolic compounds and phthalates ranged from below the limit of detection (LOD) to 8.1 ng L−1, from <LOD to 14.2 ng L−1, and from 1.00 μg L−1 to 23.8 μg L−1, respectively. The average removal efficiencies for target EDCs varied from 30% to 82%. These results indicate that environmental endocrine disrupting compounds are not completely removed during reclaimed water treatment and may be carried over into the general aquatic environment.  相似文献   

17.
A simple, low cost, fast and sensitive method is reported for the determination of the four endocrine disrupting chemicals (EDCs) 4-tert-butylphenol, 4-tert-octylphenol, bisphenol A and 17β-estradiol using pentafluoropyridine as the derivatizing reagent. These EDCs were determined by simultaneous extraction and derivatization in a solid phase analytical derivatization (SPAD) technique without the aid of any phase transfer catalyst (PTC) or an ion-pair mechanism. Recoveries of analytes as their tetrafluoropyridyl derivatives from water ranged from 71% for 4-tert-butylphenol to 106% for 17β-estradiol; from urine they ranged from 61% for 17β-estradiol to 91% for 4-tert-octylphenol; and from humic acids solution the ranged from 59% for 17β-estradiol to 104% for 4-tert-octylphenol in humic acid solutions. Calibration curves were constructed from a matrix of human male urine in the range 1-40 ng/mL and had coefficients of correlation greater than 0.99. For 4-tert-butylphenol, bisphenol A and 17β-estradiol the limits of quantitation were 5 ng/mL and for 4-tert-octylphenol it was 1 ng/mL. This method was applied to determine EDCs and detected 4-tert-octylphenol, bisphenol A and 17β-estradiol in concentrations comparable to those found in the literature. The method offers advantages in speed of analysis, reduced reagent and specificity of derivatization.  相似文献   

18.
The analysis of pharmaceuticals and potential endocrine disruptors in the environment has rightly concentrated on their presence in wastewaters and possible contamination of receiving bodies, such as groundwaters. However, wastewater is increasingly being reused for irrigation and in order to fully understand the environmental fate of these compounds, reliable methods for their analysis in soil are required, of which there are relatively few available. This article reports a method for a range of acidic pharmaceuticals, carbamazepine, and endocrine disrupting compounds in soils with final analysis by gas chromatography-mass spectrometry. Two soil types (Phaeozom and Leptosol) and three fortification levels were used to validate the method. Recoveries of acidic pharmaceuticals varied between 62 and 102%, carbamazepine from 75 to 118%, and potential endocrine disruptors between 54 and 109%; most recoveries were between 75 and 95% and relative standard deviations were generally less than 10%. Detection limits were between 0.25 and 2.5 ng/g except for phthalates and 4-nonylphenols (25 ng/g). The method was used to analyze soils where untreated wastewaters have been used to irrigate crops for approximately 90 years. Concentrations of acidic pharmaceuticals in the soil were <1 ng/g and potential endocrine disruptors varied from below the limit of detection (estrone, 17β-estradiol, and 17α-ethinylestradiol) to 2079 ng/L (bis-diethylhexyl phthalate). This data indicated that despite the continuous application of the contaminants over many years, concentrations were generally lower than those expected to be contributed by a single irrigation event. Only carbamazepine, at concentrations of 6.48 ng/g (in Phaeozem) and 5.14 ng/g (in Leptosol), showed any evidence of persistence in the soils analyzed.  相似文献   

19.
Separation of chiral primary amino compounds was efficiently achieved under reversed-phase high performance liquid chromatography (RP-HPLC) conditions using a mixture of non-chiral crown ether (18-crown-6) and dimethyl-β-cyclodextrin (DM-β-CD) in the mobile phase. Under these conditions, the amino group of the chiral compound was protonated in a low pH mobile phase, and then interacted with 18-crown-6 and DM-β-CD to form a sandwiched complex [18-crown-6 + amine + CD]. Enantiomers of the compound in the sandwiched complex were separated with good enantioselectivity. Formation of the sandwiched complex among the chiral compound and additives in the mobile phase is a key step of the chiral separation. Four different chiral amino compounds namely, 1-aminoindan (AI), 1,2,3,4-tetrahydro-1-naphthylamine (THNA), tyrosine (Tyr), and phenylalanine (Phe), were selected to demonstrate the separation using the sandwiched complex mechanism in RP-HPLC.  相似文献   

20.
This work concentrates on a chiral separation technology named biphasic recognition applied to resolution of α-cyclohexylmandelic acid enantiomers by high-speed counter-current chromatography (HSCCC). The biphasic chiral recognition HSCCC was performed by adding lipophilic (−)-2-ethylhexyl tartrate in the organic stationary phase and hydrophilic hydroxypropyl-β-cyclodextrin in the aqueous mobile phase, which preferentially recognized the (−)-enantiomer and (+)-enantiomer, respectively. The two-phase solvent system composed of n-hexane-methyl tert-butyl ether–water (9:1:10, v/v/v) with the above chiral selectors was selected according to the partition coefficient and separation factor of the target enantiomers. Important parameters involved in the chiral separation were investigated, namely the types of the chiral selectors (CS); the concentration of each chiral selector; pH of the mobile phase and the separation temperature. The mechanism involved in this biphasic recognition chiral separation by HSCCC was discussed. Langmuirian isotherm was employed to estimate the loading limits for a given value of chiral selectors. Under optimum separation conditions, 3.5–22.0 mg of α-cyclohexylmandelic acid racemate were separated using the analytical apparatus and 440 mg of racemate was separated using the preparative one. The purities of both of the fractions including (+)-enantiomer and (−)-enantiomer from the preparative CCC separation were over 99.5% determined by HPLC and enantiomeric excess reached 100% for the (±)-enantiomers. Recovery for the target compounds from the CCC fractions reached 85–88% yielding 186 mg of (+)-enantiomer and 190 mg of (−)-enantiomer. The overall experimental results show that the HSCCC separation of enantiomer based on biphasic recognition, in which only if the CSs involved will show affinity for opposite enantiomers of the analyte, is much more efficient than the traditional monophasic recognition chiral separation, since it utilizes the cooperation of both of lipophilic and hydrophilic chiral selectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号