首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chiral α-arylthiocarboxylic acids with different substitution patterns, representing new pirinixic acid derivatives with dual PPARα/γ agonistic activities, have been separated into enantiomers on tert-butylcarbamoylquinine and quinidine based chiral anion-exchangers and amylose tris(3,5-dimethylphenylcarbamate) coated silica on analytical and preparative scale. Absolute configurations of individual enantiomers were assigned chromatographically via elution orders on the chiral anion-exchangers and were confirmed by stereoselective syntheses via Ewans auxiliaries that have lead to enantiomeric products with known absolute configurations. The results of both methods were in full agreement. Moreover, the receptor stereoselectivity in PPARα transactivation activities was consistent within the test set of structurally related compounds. Limited correlation (between elution order and substitution) was observed within the set of α-arylthiocarboxylic acids on the amylose tris(3,5-dimethylphenylcarbamate) based chiral stationary phase (CSP), in particular the elution order changed with remote substitution. This clearly demonstrates the risks of chromatographic absolute configuration assignments by prediction from one structural analog to another one, especially with CSPs such as polysaccharide CSPs that are recognized for their broad applicability due to multiple binding and chiral recognition modes. It is therefore of utmost importance that such chromatographic absolute configuration predictions by extrapolation to structural analogs are combined with orthogonal methods for verification of the results.  相似文献   

2.
Introduction In recent years, chiral transition metal cluster has at-tracted a great deal of interests due to its potential ap-plication in asymmetric catalytic reaction.1-3 Producing catalysis for asymmetric induction using a rigid chiral framework would not only bring a basically conceptual breakthrough in the asymmetric catalysis, but also en-rich the methodology in the design of new chiral cata-lysts.4 So far, a lot of chiral clusters have been re-ported,5-9 but only a few of them have bee…  相似文献   

3.
The enantioseparation of seven novel chiral transition metal tetrahedral clusters has been achieved for the first time on cellulose derivatized with tris(3,5-dimethylphenylcarbamate) (CDMPC) as chiral stationary phase (CSP) and hexane containing different alcohols as modifiers as mobile phases. The effect of mobile-phase composition on enantioselectivity was studied, and the effect of structural variation of the solutes on their enantioseparation was also investigated. It was found that both the metal in the tetrahedral core and the ligand coordinated to the atom in the tetrahedral core had significant effects on the chromatographic behavior of the analytes.  相似文献   

4.
韩小茜  魏燕  刘艳华  常静  仇伟  陈峰 《色谱》2008,26(5):631-633
在纤维素-三(3,5-二甲基苯基氨基甲酸酯)(CDMPC)手性固定相上,分别采用正相、反相及极性有机相色谱模式对氟环唑外消旋体进行了拆分,并考察了流动相组成在手性识别中对手性分离的影响。氟环唑在Chiralcel OD-H手性色谱柱(填充CDMPC手性固定相)上采用反相色谱模式,以甲醇-水(体积比为80∶20)为流动相,获得了最佳的拆分,其两对对映异构体的分离度Rs分别为1.64和6.50。  相似文献   

5.
Amylose tris(3,5-dimethylphenylcarbamate) (ADMPC) coated on a kind of small particle silica gel was prepared. On this ADMPC chiral stationary phase (CSP), the direct enantiomeric separation of six novel chiral transition metal tetrahedral clusters has firstly been achieved using n-hexane as the mobile phase containing various alcohols as modifiers. The effect of mobile phase modifiers and the structural variation of the solutes on their retention factors (k‘) and resolutions (Rs) were investigated. The result suggests that not only the structure and concentration of alcohol in mobile phase, but also the structural differences in racemates can have a pronounced effect on enantiomeric separation. ADMPC-CSP is a suitable CSP for the optical resolution of chiral tetrahedral cluster by HPLC.  相似文献   

6.
将纤维素三(3,5-二甲基苯基氨基甲酸酯)(cellulose tris(3,5-dimethyIphenylcarbamate),CDMPC)和淀粉三(3,5-二甲基苯基氨基甲酸酯)(Amylose tris(3,5-dimethylphenylcarbamate),ADMPC)分别涂敷于氨丙基硅胶上然后混合,或者将...  相似文献   

7.
Novel HPLC methods were developed for the analytical and semipreparative resolution of new antidepressant drug mirtazapine enantiomers. At analytical scale, the separation of the mirtazapine enantiomers was investigated using both cellulose and amylose tris(3,5-dimethylphenylcarbamate) (CDMPC and ADMPC) chiral stationary phases under normal-phases and polar organic modes. Good baseline enantioseparation was achieved using cellulose tris(3,5-dimethylphenylcarbamate) chiral stationary phases under both normal-phases and polar organic modes. Furthermore, the elution order of mirtazapine enantiomic pairs was found reversed by changing the stationary phase from the amylose-based ADMPC–CSPs to its cellulose-based counterpart, CDMPC–CSPs. The validation of the analytical methods including linearity, limit of detection (LOD), limit of quantification (LOQ), recovery and precision, together with the semipreparative resolution of mirtazapine racemate were carried out using cellulose tris(3,5-dimethylphenylcarbamate) chiral stationary phases and methanol as mobile phase without any basic additives under polar organic mode. At analytical scale, the elution times of both enantiomers were less than 6 min at normal temperature and 1.0 ml/min, with the separation factor () 1.99 and the resolution factor (Rs) 3.56. Then, the analytical methods were scaled up to semipreparative loading to obtain small quantities of both mirtazapine enantiomers. At semipreparative scale, about 16 mg/h enantiomers could be isolated and elution times of both enantiomers were less than 10 min at 2.0 ml/min. To increase the throughput, the technique of boxcar injections was used. One enantiomer ((−)-(R)-mirtazapine) was isolated with purity of >99.9% e.e. and >98.0% yield and another ((+)-(S)-mirtazapine) was isolated with purity of >97.0% e.e. and >99.0% yield. In addition, optical rotation and circular dichroism (CD) spectroscopy of both mirtazapine enantiomers isolated were also investigated.  相似文献   

8.
A series of novel chiral triazole compounds were synthesized. They were separated into enantiomers by liquid chromatography on an amylose tris(3,5-dimethylphenylcarbamate) (ADMPC) chiral stationary phase (CSP). The absolute configuration of each enantiomer of the investigated compounds was established by combined use of chemical correlation, chiral HPLC and circular dichroism (CD) spectra analysis methods. The influence of the mobile-phase modifiers and the structure of chiral triazole compounds on the chiral separation and retention were investigated. Reversal of the elution order of some enantiomeric pairs upon using different mobile-phase modifier was observed. The temperature effect on the chiral separation and the thermodynamic properties including enthalpy and entropy change of binding to the ADMPC-CSP were also investigated.  相似文献   

9.
This work reports the preparation of monolithic zirconia chiral columns for separation of enantiomeric compounds by capillary electrochromatography (CEC). Using sol–gel technology, a porous monolith having interconnected globular-like structure with through-pores is synthesized in the capillary column as a first step in the synthesis of monolithic zirconia chiral capillary columns. In the second step, the surface of the monolith is modified by coating with cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC) as the chiral stationary phase to obtain a chiral column (CDMPCZM). The process of the preparation of the zirconia monolithic capillary column was investigated by varying the concentrations of the components of the sol solution including polyethylene glycol, water and acetic acid. CDMPCZM is mechanically stable and no bubble formation was detected with the applied current of up to 30 μA. The enantioseparation behavior of the CDMPCZM columns was investigated by separating a set of 10 representative chiral compounds by varying the applied voltage and pH and organic composition of the aqueous organic mobile phases.  相似文献   

10.
In this study, the enantioseparation of 14 planar chiral ferrocenes containing halogen atoms, and methyl, iodoethynyl, phenyl, and 2-naphthyl groups, as substituents, was explored with a cellulose tris(4-methylbenzoate) (CMB)-based chiral column under multimodal elution conditions. n-Hexane/2-propanol (2-PrOH) 95:5 v/v, pure methanol (MeOH), and MeOH/water 90:10 v/v were used as mobile phases (MPs). With CMB, baseline enantioseparations were achieved for nine analytes with separation factors (α) ranging from 1.24 to 1.77, whereas only three analytes could be enantioseparated with 1.14 ≤ α ≤ 1.51 on a cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC)-based column, used as a reference for comparison, under the same elution conditions. Pendant group–dependent reversal of the enantiomer elution order was observed in several cases by changing CMB to CDMPC. The impact of analyte and chiral stationary phase (CSP) structure, and MP polarity on the enantioseparation, was evaluated. The two cellulose-based CSPs featured by different pendant groups were also compared in terms of thermodynamics. For this purpose, enthalpy (ΔΔH°), entropy (ΔΔS°) and free energy (ΔΔG°) differences, isoenantioselective temperatures (Tiso), and enthalpy/entropy ratios (Q), associated with the enantioseparations, were derived from van ’t Hoff plots by using n-hexane/2-PrOH 95:5 v/v and methanol/water 90:10 v/v as MPs. With the aim to disclose the functions of the different substituents in mechanisms and noncovalent interactions underlying analyte–selector complex formation at molecular level, electrostatic potential (V) analysis and molecular dynamics simulations were used as computational techniques. On this basis, enantioseparations and related mechanisms were investigated by integrating theoretical and experimental data.  相似文献   

11.
《Analytical letters》2012,45(3):457-473
Abstract

We have found that high-performance liquid chromatographic analysis of enantiomeric N-protected amino acid esters on a cellulose tris(3,5-dimethylphenylcarbamate) chiral stationary phase column (Daicel Chiralcel OD) can be utilized as one of the procedures for determining the optical purities of non-protein amino acids. The methyl esters of the N-benzyloxycarbonyl (Z) derivatives of a number of non-protein amino acids showed excellent to good enantiomeric separations using hexane - 2-propanol as a mobile phase. There was a regularity in the elution order of enantiomers: the L-isomer had a shorter retention time than the D-isomer. We have also investigated the effect of the N-protecting groups and the ester groups on the enantiomeric separation. The Z, 4-methoxybenzyloxycarbonyl (Z(OMe)), and 9-fluorenylmethoxycarbonyl (Fmoc) derivatives gave exceptionally good resolutions. By contrast, the formyl and t-butoxycarbonyl (Boc) groups impaired the enantiomeric separation. Almost all the alkyl esters examined and the benzyl ester gave resolutions better than or of the same order as the methyl ester. The resolution of β-amino acids was worse than that of the corresponding α-amino acids.  相似文献   

12.
Chiralpak IB, a new chiral stationary phase (CSP) containing cellulose tris(3,5-dimethylphenylcarabamate) immobilized onto silica gel, is investigated for the direct enantioselective separation of a set of racemic N-alkylated barbiturates and analogs of thalidomide alkylated in position 3 of the piperidin-2,6-dione ring using different nonstandard solvents such as dichloromethane (DCM), ethyl acetate, THF, methyl tert-butyl ether as an eluent and diluent, respectively, in HPLC. The separation, resolution, and elution order of the investigated compounds were compared on both immobilized and coated cellulose tris(3,5-dimethylphenylcarbamate) CSPs (Chiralpak IB and Chiralcel OD, respectively) using a mixture of n-hexane/2-propanol (90:10 v/v) as mobile phase with different flow-rates and fixed UV detection at 254 nm. The effect of the immobilization of the cellulose tris-(3,5-dimethylphenylcarbamate) CSP on silica (Chiralpak IB) on the chiral recognition ability was noted as the coated phase (Chiralcel OD) possesses a higher resolving power in some cases than the immobilized one (Chiralpak IB). However, a few racemates, which were not or poorly resolved on the immobilized Chiralpak IB or the coated Chiralcel OD when using standard solvents were most efficiently resolved on the immobilized Chiralpak IB upon using nonstandard solvents. Furthermore, the immobilized phase withstands the nonstandard (prohibited) HPLC solvents mentioned previously when used as eluents or as a dissolving agent for the analyte itself. An example of inversion or apparent inversion of elution order on Chiralpak IB is reported. The direct analysis of a spiked plasma sample extracted using DCM on Chiralpak IB is also shown.  相似文献   

13.
Chiral stationary phases (CSPs) based on the cellulose derivatives have proven to be one type of the most useful CSPs in high-performance liquid chromatography because of their versatility, durability and loadability1, 2. Flavanone was often used as a standard chiral compound for evaluating cellulose derivative for chiral columns1, 3. Krause and Galensa4 reported the enantioseparation of flavanone and its seven derivatives on six kinds of commercial chiral column. 4-Methoxyl flavanone, 5-…  相似文献   

14.
In the present work, an amylose tris(3,5-dimethylphenylcarbamate) (ADMPC) chiral stationary phase (CSP) was prepared by coating ADMPC on small-particle silica gel. This ADMPC-CSP was for the first time successfully applied to separate a series of novel chiral metal tetrahedrane-type clusters. Furthermore, the influence of a mobile-phase modifier (various alcohols added in the mobile phase), including its concentration and structure, and the structures of the clusters on the chiral separation and retention was investigated. The results suggest that not only the structure and concentration of alcohol in the mobile phase, but also the subtle structural differences in racemate can have a pronounced effect on the enantiomeric separation and retention.  相似文献   

15.
在Pirkle型的(S,S)-Whelk-O 1与纤维素衍生物型的CDMPC两种手性柱上对六种 外消旋萘普生酯进行了对映体分离,通过研究烷氧基结构上的差异以及流动相中不 同的醇类添加剂对手性识别的影响,探讨和比较了外消旋萘普生酯在两种手性固定 相上手性识别的机理。对于 (S,S)-Whelk-O 1, 溶质与固定相之间的吸引作用于 手性识别的主要因素,而对于CDMPC,溶质在手性空腔中的空间适应性很可能是手 性识别的关键。  相似文献   

16.
The key interactions of a chiral solute, norephedrine or 2-amino-1-phenyl-1-propanol (PPA), with three commercially important polysaccharide-based chiral stationary phases, amylose Tris(3,5-dimethylphenylcarbamate) (ADMPC), amylose Tris((S)-alpha-methylbenzylcarbamate) (ASMBC) and cellulose Tris(3,5-dimethylphenylcarbamate) (CDMPC) are studied in detail using different experimental techniques and molecular simulations. The HPLC retention factors of the enantiomers of PPA in n-hexane/2-propanol (90/10, v/v) at 298 K vary significantly with these sorbents. The enantioselectivities of -PPA versus +PPA are 2.4, 1.0, and 0.8 (reversal in the elution order), respectively. The observed changes in the wavenumbers and the intensities of the amide bands of these polymers in the attenuated total reflection-infrared spectroscopy (ATR-IR) spectra upon absorption of each enantiomer are different. The IR wavenumbers, and the H-bonding interaction energies of the polymer side chains with each enantiomer (polymer-solute) in four different binding configurations are estimated and ranked using the density functional theory (the DFT/B3LYP/6-311+g(d,p) level of theory). X-ray diffraction (XRD) results show that the polymer crystallinity increases significantly upon absorption of each enantiomer. The helical pitches and the inter-rod packing for these polymers are inferred from the XRD results and incorporated into the molecular dynamics (MD) simulations. The elution orders predicted for the enantiomers of PPA using MD simulations of the polymer-PPA binary systems are consistent with the chromatography results. The enantioselectivity observed in ADMPC is hypothesized to be due to having three simultaneous interactions (two H-bond and one pi-pi) of the polymer with -PPA versus two interactions (one H-bond and one pi-pi) with +PPA.  相似文献   

17.
Novel HPLC methods were developed for the analytical and semipreparative resolution of new antianginal drug ranolazine enantiomers. Good baseline enantioseparation was achieved using cellulose tris (3,5-dimethylphenylcarbamate) (CDMPC) chiral stationary phases (CSPs) under both normal-phase and polar organic modes. The validation of the analytical methods including linearity, LODs, recovery, and precision, and the semipreparative resolution of ranolazine racemate were carried out using methanol as mobile phase without any basic and acidic additives under polar organic mode, using CDMPC CSPs. At analytical scale, the elution times of both enantiomers were less than 7.5 min at 20 degrees C and 1.0 mL/min, with the separation factor (a) 1.88 and the resolution factor (R(s)) 2.95. At semipreparative scale, about 14.3 mg/h enantiomers could be isolated and elution times of both enantiomers were less than 13 min at 2.0 mL/min. To increase the throughput, the technique of overlapping injections was used. The first eluted enantiomer was isolated with a purity of 99.6% enantiomer excess (e.e.) and > 99.0% yield. The second enantiomer was isolated with a purity of 98.8% e.e. and > 99.0% yield. In addition, optical rotation and circular dichroism spectroscopy of both ranolazine enantiomers isolated were also investigated.  相似文献   

18.
The structural analysis of amylose tris(3,5-dimethylphenylcarbamate) (ADMPC) was performed by NMR spectroscopy using a sample with a lower degree of polymerization in order to understand the chiral recognition mechanism when it was used as a chiral stationary phase (CSP) in high-performance liquid chromatography (HPLC). ADMPC exhibited chiral discrimination for many enantiomers, including 1-(9-anthryl)-2,2,2-trifluoroethanol (1) and 1,1'-bi-2-naphthol (2) in both NMR and HPLC. A good agreement was observed between the HPLC and NMR results when chloroform was employed as the common solvent. The structure of ADMPC in solution was investigated by NMR using the 2D NOESY technique coupled with computer modeling, and a left-handed 4/3 helical structure was obtained as the most probable one. The binding geometry between ADMPC and the enantiomers of 1 was also investigated by (1)H NMR titration. On the basis of these results combined with molecular modeling, a rational model to explain the chiral discrimination mechanism of 1 on ADMPC was proposed.  相似文献   

19.
Two chiral stationary phases (CSPs) based on optically active (3,3′-diphenyl-1,1′-binaphthyl)-20-crown-6 covalently bonded to silica gel were utilized for the first time for the resolution of racemic β-amino acids using high performance liquid chromatography. All of the 10 β-amino acids tested were resolved on the CSP containing residual silanol-protecting n-octyl groups, while only five β-amino acids were resolved on the CSP containing residual silanol groups. The superiority of the CSP containing residual silanol-protecting n-octyl groups and the characteristic retention behaviors of the two enantiomers on the CSP were rationalized to stem from the removal of the residual silanol groups, which can otherwise induce the non-enantioselective retention of the analytes, and the improved lipophilicity of the CSP. The elution orders of the two enantiomers of β-amino acids were identical on the two CSPs and, consequently, it was concluded that the two CSPs were concluded to utilize identical chiral recognition mechanisms. The different elution orders of the analytes were proposed to be attributed to the presence or absence of π-π interactions between the CSP and analytes.  相似文献   

20.
Ghanem A  Hoenen H  Aboul-Enein HY 《Talanta》2006,68(3):602-609
A direct liquid chromatographic enantioselective separation of a set of β-blocker enantiomers on the new immobilized and conventional coated amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phases (Chiralpak IA and Chiralpak AD, respectively) was studied using methanol as mobile phase and ethanolamine as an organic modifier (100:0.1, v/v). The separation, retention and elution order of the enantiomers on both columns under the same conditions were compared. The effect of the immobilization of the amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phase on silica (Chiralpak IA) on the chiral recognition ability was noted when compared to the coated phase (Chiralpak AD) which possesses a higher resolving power than the immobilized one (Chiralpak IA). A few racemates, which were not or poorly resolved on the immobilized Chiralpak IA were most efficiently resolved on the coated Chiralpak AD. However, the immobilized phase withstand solvents like dichloromethane when used as an eluent or as a dissolving agent for the analyte. The versatility of the immobilized Chiralpak IA in monitoring reactions performed in dichloromethane using direct analysis techniques without further purification, workup or removal of dichloromethane was studied on a representative example consisting of the lipase-catalyzed irreversible transesterification of a β-blocker using either vinylacetate or isopropenyl acetate as acyl donor in dichloromethane as organic solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号