首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel sample preparation method “Dispersive liquid–liquid–liquid microextraction” (DLLLME) was developed in this study. DLLLME was combined with liquid chromatography system to determine chlorophenoxy acid herbicide in aqueous samples. DLLLME is a rapid and environmentally friendly sample pretreatment method. In this study, 25 μL of 1,1,2,2-tetrachloroethane was added to the sample solution and the targeted analytes were extracted from the donor phase by manually shaking for 90 s. The organic phase was separated from the donor phase by centrifugation and was transferred into an insert. Acceptor phase was added to this insert. The analytes were then back-extracted into the acceptor phase by mixing the organic and acceptor phases by pumping those two solutions with a syringe plunger. After centrifugation, the organic phase was settled and removed with a microsyringe. The acceptor phase was injected into the UPLC system by auto sampler. Fine droplets were formed by shaking and pumping with the syringe plunger in DLLLME. The large interfacial area provided good extraction efficiency and shortened the extraction time needed. Conventional LLLME requires an extraction time of 40–60 min; an extraction time of approximately 2 min is sufficient with DLLLME. The DLLLME technique shows good linearity (r2 ≥ 0.999), good repeatability (RSD: 4.0–12.2% for tap water; 5.7–8.5% for river water) and high sensitivity (LODs: 0.10–0.60 μg/L for tap water; 0.11–0.95 μg/L for river water).  相似文献   

2.
A simple and sensitive methodology based on liquid-liquid-liquid microextraction (LLLME) followed by high-performance liquid chromatography-ultraviolet detection (HPLC-UV) has been successfully developed for the determination of atorvastatin (AT) in human plasma. AT was first extracted from 4.5 mL acidic aqueous sample (diluted plasma, donor phase, pH 1) at temperature 45 °C through 400 μL 1-octanol for 4.5 min, while being agitated by a stirring bar at 1250 rpm. Then, a 5.5 μL free suspended basic aqueous droplet (acceptor phase, pH 10) was delivered to the top-center position of the organic membrane. The mixture was stirred at 650 rpm for 7.5 min and the analyte was back-extracted into the droplet. Finally, the acceptor phase was taken into a microsyringe and injected directly into the HPLC. An enrichment factor of 187 along with substantial sample clean up was obtained under the optimized conditions. The calibration curve showed linearity in the range of 1-500 ng mL−1 with regression coefficient corresponding to 0.996. Limits of detection (S/N = 3) and quantification (S/N = 10) were 0.4 and 1 ng mL−1, respectively. A reasonable relative recovery (91%) and satisfactory intra-assay (4.4-7.0%, n = 6) and inter-assay (4.9-7.7%, n = 8) precision illustrated good performance of the analytical procedure. This technique was eventually applied for the determination of AT in human plasma after oral administration of 40 mg single dose of drug. The protocol proved to be highly cost-effective and reliable for the screening purpose.  相似文献   

3.
This paper describes a simultaneously performed two-/three-phase hollow-fiber-based liquid-phase microextraction (HF-LPME) method for the determination of aromatic amines with a wide range of pKa (−4.25 to 4.6) and log KOW (0.9–2.8) values in environmental water samples. Analytes including aniline, 4-nitroaniline, 2,4-dinitroaniline and dicloran were extracted from basic aqueous samples (donor phase, DP) into the microliter volume of organic membrane phase impregnated into the pores of the polypropylene hollow fiber wall, then back extracted into the acidified aqueous solution (acceptor phase, AP) filling in the lumen of the hollow fiber. The mass transfer of the analytes from the donor phase through the organic membrane phase into acceptor phase was driven by both the counter-coupled transport of hydrogen ions and the pH gradient. Afterwards, the hollow fiber was eluted with 50 μL methanol to capture the analytes from both the organic membrane and the acceptor phase. Factors relevant to the enrichment factors (EFs) were investigated. Under the optimized condition (DP: 100 mL of 0.1 M NaOH with 2 M Na2SO4; organic phase: di-n-hexyl with 8% trioctylphosphine oxide (TOPO); AP: 10 μL of 8 M HCl; extraction time of 80 min), the obtained EFs were 405–2000, dynamic linear ranges were 5–200 μg/L (R > 0.9976), and limits of detection were 0.5–1.5 μg/L. The presence of humic acid (0–25 mg/L dissolved organic carbon) had no significant effect on the extraction efficiency. The proposed procedure worked very well for real environmental water samples with microgram per liter level of analytes, and good spike recoveries (80–103%) were obtained.  相似文献   

4.
A new design of hollow fiber solid–liquid phase microextraction (HF-SLPME) was developed for the determination of caffeic acid in medicinal plants samples as Echinacea purpure. The membrane extraction with sorbent interface used in this research is a three-phase supported liquid membrane consisting of an aqueous (donor phase), organic solvent/nano sorbent (membrane) and aqueous (acceptor phase) system operated in direct immersion sampling mode. The multi-walled carbon nanotube dispersed in the organic solvent is held in the pores of a porous membrane supported by capillary forces and sonification. It is in contact with two aqueous phases: the donor phase, which is the aqueous sample, and the acceptor phase, usually an aqueous buffer. All microextraction experiments were supported using an Accurel Q3/2 polypropylene hollow fiber membrane (600 μm I.D., 200 μm wall thicknesses, and 0.2 μm pore size). The experimental setup is very simple and highly affordable. The hollow fiber is disposable, so single use of the fiber reduces the risk of cross-contamination and carry-over problems. The proposed method allows the very effective and enriched recuperation of an acidic analyte into one single extract. In order to obtain high enrichment and extraction efficiency of the analyte using this novel technique, the main parameters were optimized. Under the optimized extraction conditions, the method showed good linearity (0.0001–50 μg/L), repeatability, low limits of detection (0.00005 μg/L) and excellent enrichment (EF = 2108).  相似文献   

5.
A simple, selective, sensitive and inexpensive method of hollow fiber-based liquid–liquid–liquid microextraction (HF-LLLME) combined with high performance liquid chromatography (HPLC)-ultraviolet (UV) detection was developed for the determination of four acidic phytohormones (salicylic acid (SA), indole-3-acetic acid (IAA), (±) abscisic acid (ABA) and (±) jasmonic acid (JA)) in natural coconut juice. To the best of our knowledge, this is the first report on the use of liquid phase microextraction (LPME) as a sample pretreatment technique for the simultaneous analysis of several phytohormones. Using phenetole to fill the pores of hollow fiber as the organic phase, 0.1 mol L−1 NaOH solution in the lumen of hollow fiber as the acceptor phase and 1 mol L−1 HCl as the donor phase, a simultaneous preconcentration of four target phytohormones was realized. The acceptor phase was finally withdrawn into the microsyringe and directly injected into HPLC for the separation and quantification of the target phytohormones. The factors affecting the extraction efficiency of four phytohormones by HF-LLLME were optimized with orthogonal design experiment, and the data was analyzed by Statistical Product and Service Solutions (SPSS) software. Under the optimized conditions, the enrichment factors for SA, IAA, ABA and JA were 243, 215, 52 and 48, with the detection limits (S/N = 3) of 4.6, 1.3, 0.9 ng mL−1 and 8.8 μg mL−1, respectively. The relative standard deviations (RSDs, n = 7) were 7.9, 4.9, 6.8% at 50 ng mL−1 level for SA, IAA, ABA and 8.4% at 500 μg mL−1 for JA, respectively. To evaluate the accuracy of the method, the developed method was applied for the simultaneous analysis of several phytohormones in five natural coconut juice samples, and the recoveries for the spiked samples were in the range of 88.3–119.1%.  相似文献   

6.
A simple and efficient dual preconcentration method of on-column liquid–liquid–liquid microextraction (LLLME) coupled with base stacking was developed for capillary zone electrophoresis (CZE) in this paper. Four N-methyl carbamates were used as target compounds to evaluate the enrichment means. The carbamates in sample solutions (donor phase) were extracted into a dodecanol phase immobilized on a porous hollow fiber, hydrolyzed and back extracted into 0.20 μL running buffer (acceptor phase) of 30 mmol/L methylamine hydrochloride (pH 11.6) containing 0.5 mmol/L tetradecyltrimethylammonium bromide inside the hollow fiber, stacked further with 0.5 mol/L NaOH injected at −10 kV for 60 s, and separated by CZE. Analytical parameters affecting the LLLME, base stacking and CZE were investigated, including sample solution volume, pH and temperature, extraction time, stirring rate, buffer component, buffer pH, NaOH concentration, stacking time, etc. The enrichment factors of the carbamates were higher than 1100. The relative standard deviation (RSD) of peak height and limits of detection (LODs) were 4.5–5.5% (n = 6) and 2–4 ng/mL (S/N = 3) for standard solutions, respectively. The proposed method was applied to the analysis of vegetable and fruit samples with the RSD less than 6.0% (n = 3) and LODs of 6–10 ng/g (S/N = 3). The calibration solutions were prepared by diluting the stock solutions with blank sample solutions, and the calibration concentrations ranged from 0.012 to 1.0 μg/mL (r > 0.9951). The analytical results demonstrated that the LLLME coupled with base stacking was a simple, convenient and reliable on-column sample pretreatment method for the analysis of anionic analytes in CZE.  相似文献   

7.
A new sample preparation method named directly suspended droplet liquid-liquid-liquid phase microextraction was used in this research for determination of three chlorophenols in environmental water samples. The analytes (2-chlorophenol, 3-chlorophenol and 4-chlorophenol) were extracted from 4.5?mL acidic donor phase, (pH 2, P1) into an organic phase, 350?µL?of benzene/1-octanol (90?:?10 v/v, P2) and then were back-extracted into a 7?µL droplet of an basic (pH 13) aqueous solution (acceptor phase, P3). In this method, contrary to the ordinary single drop liquid-phase microextraction technique, an aqueous large droplet is freely suspended on the surface of the organic solvent, without using a microsyringe as supporting device. This aqueous microdroplet is delivered at the top-centre position of an immiscible organic solvent which is laid over the aqueous donor sample solution while the solution is being agitated. Then, the acceptor phase containing chlorophenols was withdrawn back into a HPLC microsyringe and neutralised by adding of 7?µL HCl 0.1?M. The total amount was eventually injected into the HPLC system with UV detection at 225?nm for further analysis. Parameters such as the organic solvent, phases volumes, extraction and back-extraction times, stirring rate and pH values were optimised. The calibration graphs are linear in the range of 10–2000?µg?L?1 with r?≥?0.9973. The enrichment factors were ranged from 115 to 170, and the limit of detection (LOD, n?=?7) varied from 5 to 10?µg?L?1. The relative standard deviations (RSDs, n?=?5) were found 6.8 to 7.4 at S/N?=?3. All experiments were carried out at room temperature, (22?±?0.5°C).  相似文献   

8.
In this study we on-line coupled hollow fiber liquid–liquid–liquid microextraction (HF-LLLME), assisted by an ultrasonic probe, with high-performance liquid chromatography (HPLC). In this approach, the target analytes – 2-chlorophenol (2-CP), 3-chlorophenol (3-CP), 2,6-dichlorophenol (2,6-DCP), and 3,4-dichlorophenol (3,4-DCP) – were extracted into a hollow fiber (HF) supported liquid membrane (SLM) and then back-extracted into the acceptor solution in the lumen of the HF. Next, the acceptor solution was withdrawn on-line into the HPLC sample loop connected to the HF and then injected directly into the HPLC system for analysis. We found that the chlorophenols (CPs) could diffuse quickly through two sequential extraction interfaces – the donor phase – SLM and the SLM – acceptor phase – under the assistance of an ultrasonic probe. Ultrasonication provided effective mixing of the extracted boundary layers with the bulk of the sample and it increased the driving forces for mass transfer, thereby enhancing the extraction kinetics and leading to rapid enrichment of the target analytes. We studied the effects of various parameters on the extraction efficiency, viz. the nature of the SLM and acceptor phase, the compositions of the donor and acceptor phases, the fiber length, the stirring rate, the ion strength, the sample temperature, the sonication conditions, and the perfusion flow rate. This on-line extraction method exhibited linearity (r2 ≥ 0.998), sensitivity (limits of detection: 0.03–0.05 μg L−1), and precision (RSD% ≤ 4.8), allowing the sensitive, simple, and rapid determination of CPs in aqueous solutions and water samples with a sampling time of just 2 min.  相似文献   

9.
In this paper, a new version of salting-out homogenous liquid–liquid extraction based on counter current mode combined with dispersive liquid–liquid microextraction has been developed for the extraction and preconcentration of some pesticides from aqueous samples and their determination by gas chromatography–flame ionization detection. In order to perform the method, aqueous solution of the analytes containing acetonitrile and 1,2-dibromoethane is transferred into a narrow bore tube which is filled partially with NaCl. During passing the solution through the tube, fine droplets of the organic phase are produced at the interface of solution and salt which go up through the tube and form a separated layer on the aqueous phase. The collected organic phase is removed and injected into de-ionized water for more enrichment of the analytes. Under the optimum extraction conditions, the method shows broad linear ranges for the target analytes. Enrichment factors and limits of detection for the selected pesticides are obtained in the ranges of 3480–3800 and 0.1–5 μg L−1, respectively. Relative standard deviations are in the range of 2–7% (n = 6, C = 50 or 100 μg L−1, each analyte). Finally, some aqueous samples were successfully analyzed using the developed method.  相似文献   

10.
By using ionic liquid as membrane liquid and tri-n-octylphosphine oxide (TOPO) as additive, hollow fiber supported liquid phase microextraction (HF-LPME) was developed for the determination of five sulfonamides in environmental water samples by high-performance liquid chromatography with ultraviolet detection The extraction solvent and the parameters affecting the extraction enrichment factor such as the type and amount of carrier, pH and volume ratio of donor phase and acceptor phase, extraction time, salt-out effect and matrix effect were optimized. Under the optimal extraction conditions (organic liquid membrane phase: [C8MIM][PF6] with 14% TOPO (w/v); donor phase: 4 mL, pH 4.5 KH2PO4 with 2 M Na2SO4; acceptor phase: 25 μL, pH 13 NaOH; extraction time: 8 h), low detection limits (0.1–0.4 μg/L, RSD ≤ 5%) and good linear range (1–2000 ng/mL, R2 ≥ 0.999) were obtained for all the analytes. The presence of humic acid (0–25 mg/L dissolved organic carbon) and bovine serum albumin (0–100 μg/mL) had no significant effect on the extraction efficiency. Good spike recoveries over the range of 82.2–103.2% were obtained when applying the proposed method on five real environmental water samples. These results indicated that this present method was very sensitive and reliable with good repeatabilities and excellent clean-up in water samples. The proposed method confirmed hollow fiber supported ionic liquid membrane based LPME to be robust to monitoring trace levels of sulfadiazine, sulfamerazine, sulfamethazine, sulfadimethoxine and sulfamethoxazole in aqueous samples.  相似文献   

11.
Alkyl alkylphosphonic acids (AAPAs) are important environmental markers of nerve agents. A simple hollow fiber-based liquid–liquid–liquid microextraction (HFLLLME) technique has been developed to enrich the AAPAs from water. AAPAs were extracted from acidified aqueous phase to organic phase present in pores of the hollow fiber, and then back extracted into the alkaline acceptor phase present in the lumen of the hollow fiber. Variables affecting the HFLLLME process were optimized using a Plackett–Burman design and a Doehlert design. Optimal experimental conditions were: organic solvent, 1-octanol; pH of acceptor phase, 14; extraction time, 60 min; pH of donor phase, 1; and NaCl concentration, 10% (w/v). Depending upon the alkyl substituent, lower limits of detection varied from 0.1 to 100 ng mL−1 (S/N ≥ 5). Repeatability of the method was observed with relative standard deviation of 1.49–9.83% (n = 3). After validation, the method was applied to detect AAPAs present in the water sample provided by the Organization for Prohibition of Chemical Weapons (OPCW) during the 23rd official proficiency test. The added advantage of this method is that several successive extractions of AAPAs from the same water sample can be performed.  相似文献   

12.
A new and fast hollow fiber based liquid phase microextraction (HF-LPME) method using volatile organic solvents coupled with high-performance liquid chromatography (HPLC) was developed for determination of aromatic amines in the environmental water samples. Analytes including 3-nitroaniline, 3-chloroaniline and 4-bromoaniline were extracted from 6 mL basic aqueous sample solution (donor phase, NaOH 1 mol L−1) into the thin film of organic solvent that surrounded and impregnated the pores of the polypropylene hollow fiber wall (toluene, 20 μL), then back-extracted into the 6 μL acidified aqueous solution (acceptor phase, HCl 0.5 mol L−1) in the lumen of the two-end sealed hollow fiber. After the extraction, 5 μL of the acceptor phase was withdrawn into the syringe and injected directly into the HPLC system for the analysis. The parameters influencing the extraction efficiency including the kind of organic solvent and its volume, composition of donor and acceptor phases and the volume ratio between them, extraction time, stirring rate, salt addition and the effect of the analyte complexation with 18-crown-6 ether were investigated and optimized. Under the optimal conditions (donor phase: 6 mL of 1 mol L−1 NaOH with 10% NaCl; organic phase: 20 μL of toluene; acceptor phase: 6 μL of 0.5 mol L−1 HCl and 600 m mol L−1 18-crown-6 ether; pre-extraction and back-extraction times: 75 s and 10 min, respectively; stirring rate: 800 rpm), the obtained EFs were between 259 and 674, dynamic linear ranges were 0.1-1000 μg L−1 (R > 0.9991), and also the limits of detection were in the range of 0.01-0.1 μg L−1. The proposed procedure worked very well for real environmental water samples with microgram per liter level of the analytes, and good relative recoveries (91-102%) were obtained for the spiked sample solutions.  相似文献   

13.
A salting-out assisted liquid extraction coupled with back-extraction by a water/acetonitrile/dichloromethane ternary component system combined with high-performance liquid chromatography with diode-array detection (HPLC–DAD) was developed for the extraction and determination of sulfonamides in solid tissue samples. After the homogenization of the swine muscle with acetonitrile and salt-promoted partitioning, an aliquot of 1 mL of the acetonitrile extract containing a small amount of dichloromethane (250–400 μL) was alkalinized with diethylamine. The clear organic extract obtained by centrifugation was used as a donor phase and then a small amount of water (40–55 μL) could be used as an acceptor phase to back-extract the analytes in the water/acetonitrile/dichloromethane ternary component system. In the back-extraction procedure, after mixing and centrifuging, the sedimented phase would be water and could be withdrawn easily into a microsyringe and directly injected into the HPLC system. Under the optimal conditions, recoveries were determined for swine muscle fortified at 10 ng/g and quantification was achieved by matrix-matched calibration. The calibration curves of five sulfonamides showed linearity with the coefficient of estimation above 0.998. Relative recoveries for the analytes were all from 96.5 to 109.2% with relative standard deviation of 2.7–4.0%. Preconcentration factors ranged from 16.8 to 30.6 for 1 mL of the acetonitrile extract. Limits of detection ranged from 0.2 to 1.0 ng/g.  相似文献   

14.
A new simultaneous derivatization and extraction method for the preconcentration of ammonia using new one-step headspace dynamic in-syringe liquid-phase microextraction with in situ derivatization was developed for the trace determination of ammonium in aqueous samples by liquid chromatography with fluorescence detection (LC–FLD). The acceptor phase (as derivatization reagent) containing o-phthaldehyde and sodium sulfite was held within a syringe barrel and immersed in the headspace of sample container. The gaseous ammonia from the alkalized aqueous sample formed a stable isoindole derivative with the acceptor phase inside the syringe barrel through the reciprocated movements of plunger. After derivatization-cum-extraction, the acceptor phase was directly injected into LC–FLD for analysis. Parameters affecting the ammonia evolution and the extraction/derivatization efficiency such as sample matrix, pH, temperature, sampling time, and the composition of derivatization reagent, reaction temperature, and frequency of reciprocated plunger, were studied thoroughly. Results indicated that the maximum extraction efficiency was obtained by using 100 μL derivatization reagent in a 1-mL gastight syringe under 8 reciprocated movements of plunger per min to extract ammonia evolved from a 20 mL alkalized aqueous solution at 70 °C (preheated 4 min) with 380 rpm stirring for 8 min. The detection was linear in the concentration range of 0.625–10 μM with the correlation coefficient of 0.9967 and detection limit of 0.33 μM (5.6 ng mL−1) based on S N−1 = 3. The method was applied successfully to determine ammonium in real water samples without any prior cleanup of the samples, and has been proved to be a simple, sensitive, efficient and cost-effective procedure for trace ammonium determination in aqueous samples.  相似文献   

15.
A novel arrangement for microporous membrane liquid–liquid extraction from the aqueous donor phase to the organic acceptor phase within a micro-vial, which is compatible with the chromatograph autosampler is presented. The device consisted of a stoppered glass micro-vial containing the organic solvent where the septum of the screw stopper was replaced by a sized piece of membrane which is hermetically assembled to the volumetric flask containing the aqueous donor solution. The placement of the membrane in alternative contact with the solutions was achieved by orbital agitation. As a preliminary study, 2-ethylhexyl 4-(dimethylamino)benzoate has been determined (limit of quantification 0.11 μg L−1, precision 7.4%). The small quantity of organic solvent used, the achieved sample cleanup, and the minimal handling and risk of cross-contamination are significant operational advantages.  相似文献   

16.
Wang JX  Jiang DQ  Yan XP 《Talanta》2006,68(3):945-950
A method for determination of toluene, ethylbenzene, p-xylene, o-xylene, 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene in water samples was developed by a fiber-in-tube liquid phase microextraction technique (fiber-in-tube LPME) coupled with GC-flame ionization detector (FID). The method used a tube packed with polytetrafluoroethylene (PTFE) fibers as an extraction medium, improving the stableness of the solvent and the performance of extraction. Certain amounts of curled PTFE fibers were packed into a section of PTFE tube. Because the fibers were curled, they formed network structure in the tube. The fiber packed tube was firstly immersed into organic solvent to be filled with organic solvent and then was exposing to an aqueous solution to extract the target compounds. The extract was then retracted by a conventional GC microsyringe and analyzed by GC-FID. Extraction of the analytes in 8 ml aqueous solution for 15 min yielded enrichment factors of 224-361. The precision (R.S.D., n = 5) was 3.6-8.1% for peak area. The limit of detection (LOD, S/N = 3) for the six substituted benzenes were in the range of 0.3-5.0 μg l−1.  相似文献   

17.
A dynamic supported liquid membrane tip extraction (SLMTE) procedure for the effective extraction and preconcentration of glyphosate (GLYP) and its metabolite aminomethylphosphonic acid (AMPA) in water has been investigated. The SLMTE procedure was performed in a semi-automated dynamic mode and demonstrated a greater performance against a static extraction. Several important extraction parameters such as donor phase pH, cationic carrier concentration, type of membrane solvent, type of acceptor stripping phase, agitation and extraction time were comprehensively optimized. A solution of Aliquat-336, a cationic carrier, in dihexyl ether was selected as the supported liquid incorporated into the membrane phase. Quantification of GLYP and AMPA was carried out using capillary electrophoresis with contactless conductivity detection. An electrolyte solution consisting of 12 mM histidine (His), 8 mM 2-(N-morpholino)ethanesulfonic acid (MES), 75 μM cetyltrimethylammonium bromide (CTAB), 3% methanol, pH 6.3, was used as running buffer. Under the optimum extraction conditions, the method showed good linearity in the range of 0.01–200 μg/L (GLYP) and 0.1–400 μg/L (AMPA), acceptable reproducibility (RSD 5–7%, n = 5), low limits of detection of 0.005 μg/L for GLYP and 0.06 μg/L for AMPA, and satisfactory relative recoveries (90–94%). Due to the low cost, the SLMTE device was disposed after each run which additionally eliminated the possibility of carry-over between runs. The validated method was tested for the analysis of both analytes in spiked tap water and river water with good success.  相似文献   

18.
The simultaneous extraction of acidic and basic analytes from a particular sample is a challenging task. In this work, electromembrane extraction (EME) of acidic non-steroidal anti-inflammatory drugs and basic β-blockers in a single step was carried out for the first time. It was shown that by designing an appropriate compartmentalized membrane envelope, the two classes of drugs could be electrokinetically extracted by a 300 V direct current electrical potential. This method required only a very short 10-min extraction time from a pH-neutral sample, with a small amount (50 μL) of organic solvent (1-octanol) as the acceptor phase. Analysis was carried out using gas chromatography–mass spectrometry after derivatization of the analytes. Extraction parameters such as extraction time, applied voltage, pH range, and concentration of salt added were optimized. The proposed EME technique provided good linearity with correlation coefficients from 0.982 to 0.997 over a concentration range of 1–200 μg L−1. Detection limits of the drugs ranged between 0.0081 and 0.26 μg L−1, while reproducibility ranged from 6 to 13% (n = 6). Finally, the application of the new method to wastewater samples was demonstrated.  相似文献   

19.
A simple method for the analysis of capsaicin and dihydrocapsaicin in peppers and pepper sauces by solid phase microextraction–gas chromatography–mass spectrometry has been developed. A novel device was designed for direct extraction solid phase microextraction in order to avoid damage to the fiber. The analysis was performed without derivatization for the gas chromatography–mass spectrometry analysis. Selection fiber, extraction temperature, extraction time and pH, were optimized. The method was linear in the range 0.109–1.323 μg/mL for capsaicin and 0.107–1.713 μg/mL for dihydrocapsaicin with correlation coefficient up to r = 0.9970 for both capsaicinoids. The precision of the method was less than 10%. The method was applied to the analysis of 11 varieties of peppers and four pepper sauces. A broad range of capsaicin (55.0–25 459 μg/g) and dihydrocapsaicin (93–1 130 μg/g) was found in the pepper and pepper sauces samples (4.3–717.3 and 1.0–134.8 μg/g), respectively.  相似文献   

20.
A rapid and simple microextraction method with a high sample clean-up, termed as tandem air-agitated liquid–liquid microextraction (TAALLME), is described. This method is based upon the tandem implementation of the air-agitated liquid–liquid microextraction (AALLME), and this approach improves the applicability of the dispersive liquid–liquid microextraction (DLLME) methods in complicated matrices. With very simple tools, the three non-steroidal anti-inflammatory drugs diclofenac, ibuprofen, and mefenamic acid were efficiently extracted, with an overall extraction time of 7 min. By performing the first AALLME, these acidic analytes, contained in an aqueous sample solution (donor phase, 8.0 mL), were extracted into the organic solvent (1,2-dichloroethane, 37 μL), and their simple back-extraction into the aqueous acceptor solution (pH, 10.01, 51 μL) was obtained in 2 min by a second implementation of AALLME. Response surface methodology (RSM) was used for optimization of the experimental parameters. The pH values 2.94 and 10.01 were obtained for the donor and acceptor phases, respectively, and the volumes 99.5 and 51 μL were obtained for the organic solvent and the acceptor phase, respectively, as the optimal extraction conditions. Under the optimized conditions, tandem AALLME-HPLC-UV provided a good linearity in the range of 0.5–4000 ng mL−1, limits of detection (0.1–0.3 ng mL−1), extraction repeatabilities (relative standard deviations (RSDs) below 7.7%, n = 5), and the enrichment factors (EFs) of 80–104. Finally, the applicability of the proposed method was evaluated by the extraction and determination of the drugs under study in the wastewater and human plasma samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号