首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ginseng is a popular herb worldwide and has had varied uses in traditional Asian medicine for thousands of years. There are several different species of the herb, but all share the same constituents. Ginsenosides, the most extensively studied chemical components of ginseng, are generally considered to be one of the most important active ingredients of the plant. In this study, we have developed fast and efficient methodology for isolation of four known ginsenosides Rf, Rd, Re and Rb1 from Ginseng by high performance counter-current chromatography (HPCCC) coupled with evaporative light scattering detection (ELSD). The crude sample for HPCCC was purified firstly from a ginseng extraction using macroporous resin. The enriched saponin fraction (480 mg) was separated by using methylene chloride–methanol–5 mM aqueous ammonium acetate–isopropanol (6:2:4:3, v/v,) as the two-phase solvent system and yielded 10.7 mg of Rf, 11.0 mg of Rd, 13.4 mg of Re and 13.9 mg of Rb1. The purity of these ginsenosides was 99.2%, 88.3%, 93.7% and 91.8%, respectively assessed by HPLC-DAD-ELSD, and their structures were characterized by electrospray ionization mass spectrometry (ESI-MS) and compared with standards. Ammonium acetate was used to shorten the separation time and eliminate emulsification together with a flow step-gradient. The salt can be removed by re-dissolving the sample using acetone.  相似文献   

2.
Ginseng (Panax quinquefolius), a popular herbal and nutritional supplement consumed worldwide, has been demonstrated to possess vital biological activities, which can be attributed to the presence of ginsenosides. However, the presence of ginsenosides in ginseng root residue, a by-product obtained during processing of ginseng beverage, remains unexplored. The objectives of this study were to develop a high-performance liquid chromatography-photodiode array detection-mass spectrometry (HPLC-DAD-ESI-MS) and an ultra-high-performance-liquid-chromatography-tandem mass spectrometry (UPLC-HRMS-MS/MS) method for the comparison of ginsenoside analysis in ginseng root residue. Results showed that by employing a Supelco Ascentis Express C18 column (150 × 4.6 mm ID, particle size 2.7 μm) and a gradient mobile phase of deionized water and acetonitrile with a flow rate at 1 mL/min and detection at 205 nm, a total of 10 ginsenosides, including internal standard saikosaponin A, were separated within 18 min and detected by HPLC-DAD-ESI-MS. Whereas with UPLC-HRMS-MS/MS, all the 10 ginsenosides were separated within six minutes by using an Acquity UPLC BEH C18 column (50 × 2.1 mm ID, particle size 1.7 μm, 130 Å) and a gradient mobile phase of ammonium acetate and acetonitrile with column temperature at 50 °C, flow rate at 0.4 mL/min and detection by selected reaction monitoring (SRM) mode. High accuracy and precision was shown, with limit of quantitation (LOQ) ranging from 0.2–1.9 μg/g for HPLC-DAD-ESI-MS and 0.269–6.640 ng/g for UPLC-HRMS-MS/MS. The contents of nine ginsenosides in the ginseng root residue ranged from <LOQ-26.39 mg/g by HPLC-DAD-ESI-MS and <LOQ-21.25 mg/g by UPLC-HRMS-MS/MS, with a total amount of 38.37 and 34.71 mg/g, respectively.  相似文献   

3.
Ginseng saponins (ginsenosides) were extracted from the root and leaves of locally cultivated American ginseng (Panax quinquefolium L.). For the isolation of compounds from plant samples three different extraction methods were utilized: accelerated solvent extraction, the ultrasound-assisted solvent extraction and mechanical shaking assisted solvent extraction. The separation of compounds was achieved with a water–acetonitrile gradient system using a C18 reversed-phase column. Target compounds were identified in MS2 and MS3 experiments. The relative distribution of these ginsenosides in each root and leaf extract was established. The limit of detection of the method was less than 30 ng/ml. Recovery of ginseng saponins in spiked samples exceeded 80%, while the relative standard deviation ranged from 7.1 to 9.1%. The total concentrations of ginsenosides were 41 and 13 mg/g in root and leaves.  相似文献   

4.
The capabilities of four commercially available and low cost polymeric materials for the extraction of polar and non-polar contaminants (log Kow = −0.07–6.88, from caffeine to octocrylene, respectively) from water samples was compared. Tested sorbents were polyethersulphone, polypropylene and Kevlar, compared to polydimethylsiloxane as reference material. Parameters that affect the extraction process such as pH and ionic strength of the sample, extraction time and desorption conditions were thoroughly investigated. A set of experimental partition coefficients (Kpw), at two different experimental conditions, was estimated for the best suited materials and compared with the theoretical octanol–water (Kow) partition coefficients of the analytes. Polyethersulphone displayed the largest extraction yields for both polar and non-polar analytes, with higher Kpw and lower matrix effects than polydimethylsiloxane and polypropylene. Thus, a sorptive microextraction method, followed by large volume injection (LVI) gas chromatography–tandem mass spectrometry (GC–MS/MS), was proposed using the former sorbent (2 mg) for the simultaneous determination of model compounds in water samples. Good linearity (>0.99) was obtained for most of the analytes, except in the case of 4-nonylphenol (0.9466). Precision (n = 4) at 50 and 500 ng L−1 levels was in the 2–24% and limits of detection (LODs) were in the 0.6–25 ng L−1 range for all the analytes studied.  相似文献   

5.
Ginseng (Panax ginseng C. A. Meyer) has been well known to have a variety of ginsenosides that show diverse biological activities. Especially, the components of ginsenosides are quite different depending on the processing method. Recently, there have been several reports showing that less polar ginsenosides from Korean red ginseng (steam-treated Panax ginseng) have potent biological activities such as radical scavenging, vasodilating and anti-tumor activities. In this study, we have isolated four known ginsenosides Rg3, Rk1, Rg5 and F4 from Korean red ginseng by high-speed counter-current chromatography (HSCCC) coupled with evaporative light scattering detection (ELSD). The enriched saponin fraction (350 mg) was separated by using methylene chloride-methanol-water-isopropanol (6:6:4:1, v/v) as the two-phase solvent system and yielded 28.6 mg of Rg5, 26.6 mg of Rk1, 32.2 mg of Rg3 and 8.1 mg of F4. The purity of these ginsenosides was assessed by HPLC-ELSD to be over 95%, and their structures were characterized by electrospray ionization mass spectrometry (ESI-MS), (1)H NMR and (13)C NMR.  相似文献   

6.
Different second-order multivariate calibration algorithms, namely parallel factor analysis (PARAFAC), N-dimensional partial least-squares (N-PLS) and multivariate curve resolution-alternating least-squares (MCR-ALS) have been compared for the analysis of four fluoroquinolones in aqueous solutions, including some human urine samples (additional four fluoroquinolones were simultaneously determined by univariate calibration). Data were measured in a short time with a chromatographic system operating in the isocratic mode. The detection system consisted of a fast-scanning spectrofluorimeter, which allows one to obtain second-order data matrices containing the fluorescence intensity as a function of retention time and emission wavelength. The developed approach enabled us to determine eight analytes, some of them with overlapped profiles, without the necessity of applying an elution gradient, and thus significantly reducing both the experimental time and complexity. The study was employed for the discussion of the scopes of the applied second-order chemometric tools. The quality of the proposed technique coupled to each of the evaluated algorithms was assessed on the basis of the figures of merit for the determination of fluoroquinolones in the analyzed water and urine samples. Univariate calibration of four analytes led to limits of detection in the range 20–40 ng mL−1 and root mean square errors for the validation samples in the range 30–60 ng mL−1 (corresponding to relative prediction errors of 3–8%). The ranges for second-order multivariate calibration (using PARAFAC and N-PLS) of the remaining four analytes were: limit of detection, 2–8 ng mL−1, root mean square errors, 3–50 ng mL−1 and relative prediction errors, 1–5%.  相似文献   

7.
We have developed a reversed-phase high-performance liquid chromatography-pulsed amperometric detection (RP-HPLC-PAD) method for the detection of albiflorin and paeoniflorin in Paeoniae Radix and Wu-ji-san. Albiflorin and paeoniflorin were completely separated using 10% acetonitrile in 5 mM sodium phosphate buffer (pH 3.0) as an eluent and detected by PAD under alkaline conditions after using a post-column delivery system. The limit of detection (S/N = 3) and the limit of quantification (S/N = 10) were 0.10 and 0.35 ng for albiflorin, and 0.20 and 0.50 ng for paeoniflorin, respectively. The coefficients of linear regression were 0.9995 and 0.9999 for concentrations between 0.035 and 100 μg/mL. The intra- and inter-day precision (RSDs) was less than 3.56% in Paeoniae Radix and Wu-ji-san. The average recoveries from Paeoniae Radix and Wu-ji-san were 99.01–100.94% and 99.46–100.64%. This method shows higher selectivity than HPLC–UV method for analyzing albiflorin and paeoniflorin in Chinese medicinal preparation.  相似文献   

8.
A salting-out assisted liquid extraction coupled with back-extraction by a water/acetonitrile/dichloromethane ternary component system combined with high-performance liquid chromatography with diode-array detection (HPLC–DAD) was developed for the extraction and determination of sulfonamides in solid tissue samples. After the homogenization of the swine muscle with acetonitrile and salt-promoted partitioning, an aliquot of 1 mL of the acetonitrile extract containing a small amount of dichloromethane (250–400 μL) was alkalinized with diethylamine. The clear organic extract obtained by centrifugation was used as a donor phase and then a small amount of water (40–55 μL) could be used as an acceptor phase to back-extract the analytes in the water/acetonitrile/dichloromethane ternary component system. In the back-extraction procedure, after mixing and centrifuging, the sedimented phase would be water and could be withdrawn easily into a microsyringe and directly injected into the HPLC system. Under the optimal conditions, recoveries were determined for swine muscle fortified at 10 ng/g and quantification was achieved by matrix-matched calibration. The calibration curves of five sulfonamides showed linearity with the coefficient of estimation above 0.998. Relative recoveries for the analytes were all from 96.5 to 109.2% with relative standard deviation of 2.7–4.0%. Preconcentration factors ranged from 16.8 to 30.6 for 1 mL of the acetonitrile extract. Limits of detection ranged from 0.2 to 1.0 ng/g.  相似文献   

9.
In the study, a kind of novel styrene-co-4-vinylpyridine (St-co-4-VP) porous magnetic polymer beads was prepared by microwave irradiation using suspension polymerization. Microwave heating preparation greatly reduced the polymerization time to 1 h. Physical characteristic tests suggested that these beads were cross-linking and possessed spherical shape, good magnetic response and porous morphologies with a narrow diameter distribution of 70–180 μm. Therefore, these beads displayed the long-term stability after undergoing 100-time extractions. Then, an analytical method for the determination of trace 24-epiBR in plant samples was developed by magnetic polymer bead extraction coupled with high performance liquid chromatography–fluorescence detection. St-co-4-VP magnetic polymer beads demonstrated the higher extraction selectivity for 24-epiBR than other reference compounds. Linear range was 10.00–100.0 μg/L with a relative standard deviation (RSD) of 6.7%, and the detection limit was 6.5 μg/kg. This analytical method was successfully applied to analyze the trace 24-epiBR in cole and breaking-wall rape pollen samples with recoveries of 77.2–90.0% and 72.3–83.4%, respectively, and RSDs were less than 4.1%. The amount of 24-epiBR in real breaking-wall rape pollen samples was found to be 26.2 μg/kg finally. This work proposed a sensitive, rapid, reliable and convenient analytical method for the determination of trace brassinosteroids in complicated plant samples by the use of St-co-4-VP magnetic polymer bead extraction coupled with chromatographic method.  相似文献   

10.
A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction (μ-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave μ-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in μ-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave μ-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60 °C for 10 min. The extracts obtained by MAE-μ-SPE were directly analyzed by GC–MS without any clean-up process. The recoveries were in the range of 93.5–104.6%, and the relative standard deviations were lower than 8.7%.  相似文献   

11.
A method based on solid-phase microextraction (SPME) followed by on-fiber derivatization and gas chromatography–mass spectrometry detection (GC–MS) for determination of phenol in air was developed. Three different types of SPME fibers, polar and non-polar poly(dimethylsiloxane) (PDMS) and polyethylene glycol (PEG) were synthesized using sol–gel technology and their feasibility to the sampling of phenol were investigated. Different derivatization reagents for post on-fiber derivatization of phenol were studied. Important parameters influencing the extraction and derivatization process such as type of fiber coating, type and volume of derivatizing reagent, derivatization time and temperature, extraction time, and desorption conditions were investigated and optimized. The developed method is rapid, simple, easy and inexpensive and offers high sensitivity and reproducibility. Under the optimized conditions, the detection limit of the method was 5 ng L−1 using selected ion monitoring (SIM) mode. The inter-day and intra-day precisions of the developed method under optimized conditions were below 10%, and the method shows linearity in the range of 20 ng L−1 to 500 μg L−1with the correlation coefficient of >0.99. The optimized method was applied to the sampling of phenol from some biologics production areas. The compared results obtained using current and standard methods were shown to be satisfactory.  相似文献   

12.
Red ginseng has been gradually discovered to have pharmacological and physiological effects. It is well known that the most important bioactive components of ginseng are ginsenosides. The nootropic effect of ginsenosides from nine different red ginseng extracts was evaluated here. Nine groups of mice were perfused with different concentrations of nine red ginseng extracts, respectively, and two groups of mice with distilled water. The nootropic effect of ginsenosides on mice was evaluated with behavior tests and a biochemical indicator study. The extracts were identified by rapid resolution liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry(RRLC-Q-TOF-MS). Furthermore, principal component analysis(PCA) was used to analyze the contribution of chemical components from different ginseng groups. The extracts with the most and the weakest effective nootropic were found. It is notable that extract processing is a very important factor to decide pharmacological functions of ginseng extracts. As a conclusion, the most effective extract method for ginsenosides has been found. A panel of 13 ginsenosides has been screened out as chemical markers with nootropic effect, which include high level ginsenosides Ra0, Rb1, Rc, Rb2, Rb3, Re, Rd, and Rg1 and low level ginsenosides mRb1, mRc, mRb2, mRd, and F2. Low level ginsenosides were first time to be discovered as possible nootropic compounds. This method may shed light on fast discovery of bioactive compounds of medicinal plants with low level compounds.  相似文献   

13.
Callus cultures and radical cultures from the roots of plantation ginseng plants of the Maritime Territory population have been obtained. It has been established that, with respect to the level of ginsenosides that they contain, the new cultures are close to those parts of the root from which they were obtained; the spectrum of the ginsenosides in the culture is somewhat narrower than in the root. Some of the lines obtained are superior to the domestic cultures of ginseng described previously with respect both to the amount and to the variety of ginsenosides. All-Union Scientific-Research Institute for the Design of Biochemical Machinery, Ministry of the Medical Industry, Moscow. Pacific Ocean Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok. Translated from Khimiya Prirodnykh Soedinenii, No. 6, pp. 808–813, November–December, 1991.  相似文献   

14.
Callus cultures and radical cultures from the roots of plantation ginseng plants of the Maritime Territory population have been obtained. It has been established that, with respect to the level of ginsenosides that they contain, the new cultures are close to those parts of the root from which they were obtained; the spectrum of the ginsenosides in the culture is somewhat narrower than in the root. Some of the lines obtained are superior to the domestic cultures of ginseng described previously with respect both to the amount and to the variety of ginsenosides.All-Union Scientific-Research Institute for the Design of Biochemical Machinery, Ministry of the Medical Industry, Moscow. Pacific Ocean Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok. Translated from Khimiya Prirodnykh Soedinenii, No. 6, pp. 808–813, November–December, 1991.  相似文献   

15.
A multiresidue method is described for simultaneous estimation of 83 pesticides and 12 dioxin-like polychlorinated biphenyls (PCBs) in red and white wines. The samples (20 mL wine, acidified with 20 mL 1% HCl) were extracted with 10 mL ethyl acetate (+20 g sodium sulphate) and cleaned by dispersive solid-phase extraction (DSPE) with anhydrous calcium chloride and Florisil successively. The final extract (5 mL) was solvent exchanged to 1 mL of cyclohexane:ethyl acetate (9:1), further cleaned by DSPE with 25 mg primary secondary amine sorbent and analyzed by gas chromatography–time-of-flight mass spectrometry (GC–TOF-MS) within 31 min run time. The limits of quantification of most analytes were ≤10–20 μg/L. Acidification of wine prior to extraction prevented hydrolysis of organophosphorous pesticides as well as dicofol, whereas treatment with CaCl2 minimized the fatty acid co-extractives significantly. Solvent exchange to cyclohexane:ethyl acetate (9:1) further minimized the co-extractives. Recoveries at 5, 10 and 20 ng/mL were >80% for most analytes except cyprodinil, buprofezin and iprodione. The expanded uncertainties at 10 ng/mL were <20% for most analytes. Intra-laboratory precision in terms of Horwitz ratio of all the analytes was below 0.5, suggesting ruggedness of the method. Effectively, the method detection limit for most analytes was as low as up to 1 ng/mL in both red and white wine, except for cyfluthrin and cypermethrin.  相似文献   

16.
An analytical method based on microchip electrophoresis (MCE) and chemiluminescence detection (CL) was developed for the determination of intracellular sulphydryl compounds. Cell injection/loading, cytolysis, electrophoretic separation, and CL detection were integrated onto a simple cross-microfluidic chip. Selective CL detection of sulphydryl compounds was achieved by deploying the luminol–Na2S2O8 reaction. Under the CL conditions selected, many endogenous compounds in biological systems such as amino acids, biogenic amines, peptides and proteins did not produce any CL signal, which further ensured a high selectivity of the proposed MCE–CL assays. Sulphydryl compounds including cysteine (Cys), glutathione (GSH), and hemoglobin (Hb) were selected as the test compounds. The MCE separation was completed within 120 s. The detection limits were estimated to be 7 amol for Cys, 32 amol for GSH and 69 amol for Hb, respectively. The present method was applied to analyze individual red blood cells collected from both healthy subjects and cancer patients. It was found that the average intracellular contents of Cys, GSH and Hb were in the ranges of 26–43 amol/cell, 128–323 amol/cell and 522–667 amol/cell, respectively for cancer patients, compared to 579–609 amol Hb/cell and not detectable Cys and GSH for healthy subjects.  相似文献   

17.
In this study, a capillary electrochromatography (CEC) method coupled either with UV or mass spectrometric detection was developed for the detection of trace-amounts of melamine and its related by-products (ammeline, ammelide, and cyanuric acid). A series of poly(divinyl benzene-alkene-vinylbenzyl trimethylammonium chloride) monolithic columns, which were prepared by a simple in situ polymerization with divinyl benzene (DVB), vinylbenzyl trimethylammonium chloride (VBTA) and different types of alkene monomers such as 1-octene, 1-dodecene or 1-octadecene were used as separation columns, with the poly(DVB-1-dodecene-VBTA) monolith as the optimal chromatographic material because it provided a better separation. The detection limits of four melamine derivatives were in the ranged of 0.6–2.18 mg L−1 by the optimal CEC–UV mode, and were reduced from 2.2 to 19.4 μg L−1 by the optimal CEC–MS mode. Finally, the proposed CEC methods successfully determined melamine contaminations (0.1 mg L−1 per analyte) in several dairy products as test samples with analyte recovery range of 69–85% (intra-day) and 68–75% (inter-day), and with peak area reproducibility range of 4.3–8.6% and 8.7–15.6% for intra-day and inter-day, respectively. This is the first report for CEC separation coupled with MS detection applied in trace melamine residue analyses with a faster separation and comparable or even better detection ability than previous GC–MS, CE–MS, as well as LC–MS methods.  相似文献   

18.
A simple coprecipitation method was developed for the determination of tetracyclines (TCs) in surface water and milk by high-performance liquid chromatography with diode-array detection (HPLC–DAD). Magnesium ion was added into the surface water or the acetonitrile (MeCN) extract of milk. After alkalinization, magnesium hydroxide precipitates which had been formed can be separated from the matrix solution easily by centrifuging and then a dissolution step was performed by adding a small amount of acid. The final solution could be introduced directly into HPLC system for the determination of the analytes. Under optimal conditions, recoveries for the analysis of spiked surface water samples ranged from 83.6% to 95.1% with relative standard deviation of 2.0–5.5%. For milk samples, relative recoveries were 95.9–104.6% with relative standard deviation of 3.4–6.7%. The enrichment factors ranged from 41.5 to 48.1 for 10 mL water samples, and from 3.6 to 4.4 for 1 mL MeCN extracts of milk. Limits of detection ranged from 0.13 to 0.51 ng/mL, and from 3.0 to 8.5 ng/g for four TCs in surface water and milk samples, respectively.  相似文献   

19.
Ultrasound-assisted dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography-fluorescence detection was used for the extraction and determination of three biogenic amines including octopamine, tyramine and phenethylamine in rice wine samples. Fluorescence probe 2,6-dimethyl-4-quinolinecarboxylic acid N-hydroxysuccinimide ester was applied for derivatization of biogenic amines. Acetonitrile and 1-octanol were used as disperser solvent and extraction solvent, respectively. Extraction conditions including the type of extraction solvent, the volume of extraction solvent, ultrasonication time and centrifuging time were optimized. After extraction and centrifuging, analyte was injected rapidly into high-performance liquid chromatography and then detected with fluorescence. The calibration graph of the proposed method was linear in the range of 5–500 μg mL−1 (octopamine and tyramine) and 0.025–2.5 μg mL−1 (phenethylamine). The relative standard deviations were 2.4–3.2% (n = 6) and the limits of detection were in the range of 0.02–5 ng mL−1. The method was applied to analyze the rice wine samples and spiked recoveries in the range of 95.42–104.56% were obtained. The results showed that ultrasound-assisted dispersive liquid–liquid microextraction was a very simple, rapid, sensitive and efficient analytical method for the determination of trace amount of biogenic amines.  相似文献   

20.
A solid-phase microextraction (SPME) method for the determination of five amphetamine type stimulants (ATSs) in water and urine samples is presented. Analytes were simultaneously derivatized with iso-butyl chloroformate (iBCF) in the aqueous sample while being extracted, improving in this way the extractability of ATSs and permitting their determination by gas chromatography–mass spectrometry (GC–MS). The SPME procedure was carefully optimized in order to achieve adequate limits of detection (LODs) for environmental concentrations. Hence, different operational parameters were considered: type of SPME coating, ionic strength, basic catalyzer and derivatizing agent amount, extraction time and temperature. The final SPME procedure consists into the extraction of 100 mL of sample containing 2 g of dipotassium monohydrogen phosphate trihydrate and 100 μL of iBCF (1:1 in acetonitrile), for 40 min at 60 °C with a polydimethylsiloxane-divinylbenzene (PDMS-DVB) fiber. Under these conditions, LODs in wastewater ranged from 0.4 to 2 ng L−1, relative recoveries in the 84–114% range and relative standard deviations (RSD) lower than 15% were obtained. The application of the method to wastewater and river water samples showed the ecstasy ATS, 3,4-methylenedioxymethamphetamine (MDMA), as the most frequently detected, followed by methamphetamine, in concentrations around 20 ng L−1. Finally, the method was downscaled and also validated with urine samples, proving its good performance with this matrix too: RSD < 11%, recoveries in the 98–110% range and LODs lower than 0.1 μg L−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号