首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fast method using high-performance liquid chromatography based on two monolithic columns has been developed for the simultaneous determination of isoflavones extracted from soybeans and derived foods. The 12 main isoflavones were resolved in 10 min in two coupled monolithic columns working at 35 °C using a elution gradient of acidified water (0.1% acetic acid) and methanol (0.1% acetic acid) at a flow rate of 5 mL min−1. Retention time and relative area standard deviations were below 1% for all isoflavones. The method developed was successfully applied to several soy food samples and spiked samples. Total isoflavone concentration in sampled soy foods ranged from 34.28 mg L−1 to 4.29 mg g−1.  相似文献   

2.
Summary The influence of the injection volume and the sample solvent on column efficiency has been evaluated in packed nano liquid chromatography using columns 150μ i.d. Evaluation of column performance was by means of reduced plate height (h) versus reduced velocity (v) for four polyaromatic hydrocarbon test compounds (PAHs). When compounds are dissolved in a weak solvent (such as MeCN: H2O, 30∶70), and whatever the injection volume −60 or 200 nL-a gain in efficiency can be observed due to the well-known on-column focusing phenomenon, but keeping constant solute retention factors. Under optimized conditions (flow rate: 150 nLmin−1, solvent sample MeCN: H2O, 30∶70, injection volume 200 nL), a reduced plate height of 1.83 has been obtained for a 15 μm C18 packing corresponding to 36000 plates m−1, which illustrates the absence of any extracolumn band broadening under nano LC conditions.  相似文献   

3.
Monolithic capillary columns were prepared via electron beam triggered free radical polymerization within the confines of 0.2 and 0.1mm I.D. capillary columns using ethyl methacrylate and trimethylolpropane triacrylate as monomers as well as 2-propanol, 1-dodecanol and toluene as porogenic system. The influence of column diameter on reproducibility and separation performance was investigated. For evaluation, a protein standard consisting of five proteins in the range of 5800-66,000 g mol(-1) was used. Reproducibility was checked by determining the relative standard deviations in retention times, peak widths at half height, asymmetry and resolution. Excellent run-to-run reproducibility was found for both 0.2 and 0.1mm I.D. columns; batch-to-batch reproducibility was good for both column types. In order to enhance the non-polar character of the monolithic columns, lauryl methacrylate-based capillary columns were prepared. These were successfully used for the separation of proteins and a cytochrome c digest.  相似文献   

4.
Covadonga Alvarez 《Talanta》2009,79(2):280-283
A sensitive and specific and automated liquid chromatography-electrospray mass spectrometric (LC-ESI-MS) assay for the quantification of Cyclosporin A in human plasma was developed. Following a simple protein precipitation step, the supernatant was extracted on-line and directly injected into the system LC-ESI-MS. A relatively new type of monolithic column consisting of a silica rod with bimodal pore structure was used to achieve a retention time of 2.4 min with a very low backpressure at a flow rate of 1 ml/min. The assay was linear from 0.050 to 1.000 μg/ml. The mean recovery was 91%. The mean inter-day and intra-day precisions were 1.85% and 2.83%, respectively. The combination of the automated solid phase extraction and the low retention time achieved with this columns increase the throughput and decrease the time of analysis of each sample. This technology is useful in order to improve the efficiency of the bioanalytical studies.  相似文献   

5.
Dependence of monolithic column efficiency on column pressure was analyzed using modified Van Deemter relationship with incorporated inlet and outlet column pressures as independent variables. It was demonstrated that the highest column efficiency is observed at high pressures. Inlet and outlet pressure increase has to be controlled in such a way that the relative pressure approaches 1 and the pressure drop across the column is close to zero. Experimental results obtained for open and monolithic capillary columns confirm up to 50% higher column efficiency as compared to column efficiency under standard conditions found using conventional Van Deemter plot. Pressure increase also results in a decrease in the optimal carrier gas velocity and corresponding increase in the analysis time. This drawback can be compensated via an increase in the column temperature.  相似文献   

6.
The optimization of a porous structure to ensure good separation performances is always a significant issue in high‐performance liquid chromatography column design. Recently we reported the homogeneous embedment of Ag nanoparticles in periodic mesoporous silica monolith and the application of such Ag nanoparticles embedded silica monolith for the high‐performance liquid chromatography separation of polyaromatic hydrocarbons. However, the separation performance remains to be improved and the retention mechanism as compared with the Ag ion high‐performance liquid chromatography technique still needs to be clarified. In this research, Ag nanoparticles were introduced into a macro/mesoporous silica monolith with optimized pore parameters for high‐performance liquid chromatography separations. Baseline separation of benzene, naphthalene, anthracene, and pyrene was achieved with the theoretical plate number for analyte naphthalene as 36 000 m?1. Its separation function was further extended to cis/trans isomers of aromatic compounds where cis/trans stilbenes were chosen as a benchmark. Good separation of cis/trans‐stilbene with separation factor as 7 and theoretical plate number as 76 000 m?1 for cis‐stilbene was obtained. The trans isomer, however, is retained more strongly, which contradicts the long‐ established retention rule of Ag ion chromatography. Such behavior of Ag nanoparticles embedded in a silica column can be attributed to the differences in the molecular geometric configuration of cis/trans stilbenes.  相似文献   

7.
Monolithic columns having long hydrocarbon chains were prepared by in-situ polymerization in capillary fused silica tubing. The capillary columns were coupled with a newly developed carbon fiber electrospray ionization (ESI) emitter for proteomic analysis using sheathless capillary HPLC-ESI mass spectrometry (MS). The sample loading capacity and chromatographic performance of the styrene-based monolithic column, which was prepared by photo-polymerization of octylstyrene (OS) and divinylbenzene (DVB) were compared with that of the methacrylate-based monolithic column composed of lauryl methacrylate (LMA) and ethylene dimethacrylate (EDMA). The sample loading ability of tryptic digested protein in poly-OS (POS)-DVB column was higher than that of poly-LMA (PLMA)-EDMA column, possibly due to the irregular and rugluous surface offering a greater surface area of POS-DVB stationary phase. The POS-DVB column also provided better separation efficiency in the separation of high concentration (10 microg) of tryptic digested albumin bovine serum (BSA). Due to the successful interface of a highly efficient monolithic column and a stable, durable carbon fiber emitter, low femtomole levels of peptides were successfully separated and identified in the presence of large amounts of tryptic digested protein.  相似文献   

8.
Yazdi AS  Es'haghi Z 《Talanta》2005,66(3):664-669
Liquid-liquid-liquid phase microextraction (LLLME) coupled with high-performance liquid chromatography (HPLC) for the analysis of some aromatic amines is described. These compounds were extracted from 4.0 mL aqueous sample that adjusted to pH 13 with, NaOH-NaCl buffer solution (donor phase, P1) into an organic phase (P2) 150 μl benzyl alcohol and ethyl acetate (2:1) and then back extracted into a microdrop of aqueous acceptor phase (P3), adjusted at pH 2, with Na2HPO4-H3PO4 buffer solution. The extraction time, T1 (from P1 to P2) was 20 min and T2 (from P2 to P3) was 1 min. Different crown ethers as complexing agents for amines were added to the acceptor phase to improve the extraction time. Factors such as organic solvents, extraction times, and addition of crown ethers to acceptor phase and stirring rate were optimised. The method was applied for determination of aromatic amines in wastewater samples. Enrichment factors ranged from 184.5 to 389.7. The linearity range was from 3 to 1000 ng/ml and the detection limits varied from 0.8 to 1.80 ng/ml. Relative standard deviations (%, n = 5) were found (at S/N 3) in the range of 1.9 to 10.1. All experiments were carried out at room temperature, 22 ± 0.5 °C.  相似文献   

9.
Summary The effect of silanol groups on three types of octadecylmodified column gels using heat-treated silicas by calcination has been studied by high-performance liquid chromatography. After heat-treating at 180°C, 500°C and 950°C, the silicas treated with octadecyldimethylchlorosilane were used for the measurement of physical and chemical analysis. From elemental carbon analysis data, the reactive silanol group concentrations, OH(s), were determined to be 2.0 in the 180°C treated silica, 2.1 in the 500°C treated silica and 1.6 in the 950°C treated silica, respectively (original silica: mean pore diameter 116 Å, specific surface area 298 m2/g, pore volume 1.22 ml/g, particle size 5.0 m). The separation factors, , of pyridine versus phenol were measured to be 0.79 on 180°C treated silica, 0.91 on 500°C treated silica and 1.98 on 950°C treated silica, using acetonitrile-water mixtures as the eluent. And then, on the basis of the physico-chemical and chromatographic data, the three types of octadecyl modified column gels using heat-treated silicas by calcination have been compared.  相似文献   

10.
A novel monolithic capillary column (530 microm i.d.) was prepared for capillary liquid chromatography (CLC) by in situ copolymerization of octyl methacrylate (MAOE) and ethylene dimethacrylate (EDMA) in the presence of a porogen solvent containing 1-propanol, 1,4-butanediol, and water with azobisisobutyronitrile as the initiator. The influences of the contents of the porogen solvent, EDMA and the various concentration ratios of 1-propanol to 1,4-butanediol in the polymerization mixture on the morphology, porosity, globule size, stability and column efficiency were investigated. The morphology and pore size distribution of monolithic capillary columns were characterized by SEM and mercury intrusion porosimetry, respectively. Chromatographic evaluations of the columns were performed under CLC mode. The results showed that good permeability and stability can be obtained under optimal experimental conditions. The separation results of some acid, neutral and basic analytes demonstrated the hydrophobicity and low affinity to basic analytes of the new column. Three metal ions, i.e. Mg(II), Zn(II) and Cd(II) were also separated under ion-pair mode on the new monolithic capillary column and the results were acceptable.  相似文献   

11.
A simple, easy and economical approach for the preparation of a hybrid carbon/silica monolithic capillary column was described for the first time by using silica monolith as framework in combination with hydrothermal carbonization at 180°C. During the preparation process, formamide was introduced to the reaction solutions to reduce the dissolution rate of monolithic silica skeleton and its optimal concentration was 1.5 M. Fourier transform infrared spectrometry, scanning electron microscopy, energy dispersive X‐ray spectrometry, and inverse size exclusion chromatography were carried out to characterize the as‐prepared column. The results demonstrated that carbon spheres ranging from 150 to 1000 nm were successfully attached to the surface of silica skeleton. The prepared hybrid carbon/silica column had a permeability of 4.4 × 10?14 m2. Chromatographic performance of the column was evaluated by separation of various compounds including alkylbenzenes, nucleosides and bases, and aromatic acids. The column exhibited an efficiency of 75 000 plates/m for butylbenzene at the optimal linear velocity of 0.23 mm/s. The successful separation of these compounds and the study on mechanism indicated that the column can be applied in mixed‐mode chromatography.  相似文献   

12.
Summary A rapid analytical method has been developed for the mutual resolution of three steroidal compounds, withaferin A, iochromolide, and withacnistin. Liquid chromatography was performed on a Chromolith analytical column (4.6 mm i.d.×50 mm), made from a cylindrical silica rod, operated at a flow rate of 4 mL min−1 with a simple linear gradient prepared from 0.1% aqueous formic acid and 0.1% formic acid in acetonitrile. Under optimum conditions simultaneous separation of the compounds was achieved in less than 7 min, one eighth the time required for conventional LC separation. The overall analysis time was reduced without sacrificing chromatographic performance—essential for the resolution of positional isomers such as iochromolide and withacnistin. The column was coupled to a single-quadrupole mass spectrometer and the method was characterized by good performance in terms of repeatability, selectivity, linearity, and sensitivity. Detection limits in the single-ion-monitoring mode were 0.15 μg mL−1 or below. Finally, the developed method was successfully applied to the determination of withanolides in extracts fromlochroma gesnerioides obtained by three different processes—traditional Soxhlet extraction and two faster methods, microwave-assisted extraction and pressurized solvent extraction.  相似文献   

13.
A rapid high-performance liquid chromatography (HPLC) method using a monolithic column with UV detection at 238 nm was developed for the determination of fenpropathrin, betacyfluthrin, deltamethrin, and permethrin (cis and trans isomers) in whole urine. The method is based on the use of a monolithic chromatographic column and a restricted access material (RAM) cartridge for sample preparation. The mobile phase was water/acetonitrile (42:58 v/v), the flow rate was 3 mL min–1, and chromatographic separation was carried out in 10 min. The separation of cis and trans isomers of permethrin was also possible under the above-mentioned conditions. Detection limits in reconstituted whole urine samples were between 0.9 g L–1 for betacyfluthrin and 4.4 g L–1 for fenpropathrin and trans-permethrin. Recoveries for urine samples spiked with different amounts of pyrethroids (between 19 g L–1 and 75 g L–1) were in the 70±6 to 90±7% range.  相似文献   

14.
Summary Five plant oils (peanut, pumpkin seed, sesame seed, soybean, and wheat germ) have been analyzed by high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (HPLC-APCI-MS). Gradient elution was performed with acetone-acetonitrile mobile phases on a short monolithic silica column (SilicaROD, RP-18e, 50 mm×4.6 mm). Identification of plant oil triacylglycerols (TAG) was based on the pseudomolecular ion [M+H]+ and the diacylglycerol [M−RCO2]+ fragments. Positional isomers of triacylglycerols were identified from the relative intensities of the [M-RCO2]+ fragments. Principal-component analysis, used to find similarities and differences between the different oils, indicated that the different plant oils could be clearly differentiated according to their triacylglycerol composition. Presented at Balaton Symposium '01 on High-Performance Separation Methods, Siófok, Hungary, September 2–4, 2001  相似文献   

15.
In this work, the simultaneous analysis of five triazolopyrimidine sulfoanilide herbicides (flumetsulam, florasulam, metosulam, cloransulam-methyl, and diclosulam) by HPLC using UV detection and a C18 monolithic column is proposed. The mobile phase which was composed of ACN, water, and formic acid was pumped at a high flow rate (5 mmL/min) providing an analysis time of all the compounds in less than 2.3 min. The LODs were in the low microg/L range (i.e. between 60 microg/L for flumetsulam and 90 microg/L for florasulam) and the calibration curves showed good linearity (R2 > 0.9949). The method was applied to the analysis of these compounds in spiked mineral and tap waters and soils after an SPE preconcentration procedure using C18 cartridges. Mean recovery values ranged between 35 and 110% for water samples providing LODs of the whole procedure in the low ng/L level, down to 280 ng/L, and between 77 and 92% for soil samples with LODs down to 9.38 microg/kg. This is the first time that this family of pesticides is simultaneously analyzed in both types of samples by HPLC and also using a monolithic column.  相似文献   

16.
Poly(lauryl methacrylate-co-ethylene dimethacrylate) monoliths were in situ synthesized within the confines of a silicosteel tubing of 1.02 mm i.d. and 1/16" o.d. for microbore reversed-phase HPLC. In order to obtain practically useful monoliths with adequate column efficiency, low flow resistance, and good mechanical strength, some parameters such as total monomer concentration (%T), cross-linking degree (%C) and polymerization temperature were optimized. High-efficiency monoliths were successfully obtained by thermal polymerization of a monomer mixture (40%T, 10%C) with a binary porogenic solvent consisting of 1-propanol and 1,4-butandiol (7:4, v/v) at a high temperature of 90 °C. The morphology and porous structure of the resulting monoliths were assessed by scanning electron microscope (SEM) and inverse size exclusion chromatography (ISEC), while the column performance was evaluated through the separations of a series of alkylbenzenes in acetonitrile-water (50:50, v/v) eluent. At a normal flow rate of 50 μL/min (corresponding to 1.66 mm/s), the optimized monolithic columns typically exhibited theoretical plate numbers of 6000 plates/10 cm-long column for amylbenzene (k>40), and the pressure drop was always less than 1 MPa/10 cm. The monoliths, which were chemically anchored to the tube inner wall surface using a bifunctional silylation agent, exhibited adequate mechanical strength of up to 12-13 MPa, and were properly operated at 10 times higher flow rate than normal, reducing the separation time to one tenth. The lauryl methacrylate-based monolithic column was applied to a rapid and efficient separation of ten common proteins such as aprotinin, ribonuclease A, insulin, cytochrome c, trypsin, transferrin, conalbumin, myoglobin, β-amylase, and ovalbumin in the precipitation-redissolution mode. Using a linear CH(3)CN gradient elution at a flow rate of 500 μL/min (10-times higher flow rate), 10 proteins were baseline separated within 2 min.  相似文献   

17.
The separation of intact proteins, including protein isoforms arising from various amino-acid modifications, employing a poly(styrene-co-divinylbenzene) monolithic capillary column in high-performance liquid chromatography coupled on-line to a time-of-flight mass spectrometer (MS) is described. Using a 250 mm × 0.2 mm monolithic capillary column high-sensitivity separations yielding peak capacities of >600 were achieved with a 2h linear gradient and formic acid added in the mobile phase as ion-pairing agent. The combination of high-resolution chromatography with high-accuracy MS allowed to distinguish protein isoforms that differ only in their oxidation and biotinylation state allowing the separation between structural isoforms. Finally, the potential to separate proteins isoforms due to glycosylation is discussed.  相似文献   

18.
We examined the utility of a monolithic capillary column in the analysis of pyridylaminated oligosaccharides. Fluorescence detection and mass spectrometry were used to monitor a series of oligosaccharides. Although the total-ion chromatogram appeared similar to that obtained with fluorescence detection, the sensitivity of this technique was limited, especially in the case of smaller oligosaccharides. This limitation was overcome by applying selected ion current monitoring. Further, the capillary column also exhibited good reproducibility. We showed that the retention times obtained by using the monolithic capillary column could be converted into the standard data to enable comparison of the experimental data with the existing data. Furthermore, our studies revealed an important difference in the separation profile, i.e., the monolithic capillary column could resolve smaller oligosaccharides to a greater extent.  相似文献   

19.
The potential and limitations of fast reversed-phase high-performance liquid chromatographic separations for assay and purity of drug substances and drug products were investigated in the pharmaceutical industry working under current good manufacturing practice using particle packed columns and monolithic columns. On particle packed columns, the pressure limitation of commercially available HPLC systems was found to be the limiting factor for fast separations. On 3 microm particle packed columns, HPLC run times (run to run) for assay and purity of pharmaceutical products of 20 min could be achieved. As an interesting alternative, monolithic columns were investigated. Monolithic columns can be operated at much higher flow rates, thus allowing for much shorter run times compared to particle packed columns. Compared to particle packed columns, the analysis time could be reduced by a factor up to 6. However, some compounds investigated showed a dramatic loss of efficiency at higher flow rates. This phenomenon was observed for some larger molecules supporting the theory that mass transfer is critical for applications on monolithic columns. At flow rates above 3 ml/min some HPLC instruments showed a dramatic increase in noise, making quantifications at low levels impossible. For very fast separations on monolithic columns, the maximum data acquisition rate of the detector is the limiting factor.  相似文献   

20.
Eicosapentaenoic and docosahexaenoic acids are important bio‐active fatty acids in fish oils. Monolithic HPLC columns both in the polymeric cation exchange (silver‐ion) and RP formats were compared with corresponding packed columns for the isolation of these acids from tuna oil ethyl esters. Monolithic columns in both formats enabled rapid (typically 5–10 min) separations compared with packed columns (30 min). Polymeric monolithic silver‐ion disc column rapidly furnished mixtures of eicosapentaenoic and docosahexaenoic esters (90% purity) within 5–10 min, but was unable to resolve individual esters. A preparative version of the same column (80 mL bed volume) enabled isolation (>88% purity) of 100 mg quantities of eicosapentaenoic and docosahexaenoic esters from esterified tuna oil within 6 min. Baseline separation of eicosapentaenoic and docosahexaenoic esters was achieved on all RP columns. The results show that there is potential to use polymeric monolithic cation exchange columns for scaled‐up preparation of eicosapentaenoic and docosahexaenoic ester concentrates from fish oils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号