首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Valve-based comprehensive two-dimensional gas chromatography (GC × GC) is one of the most compact, robust, and inexpensive GC × GC instrument designs. The major drawback of a valve-based modulation configuration lies in diminished detection sensitivity. This loss in sensitivity is because under typical operating conditions the fraction of the first column (i.e., column 1) effluent transferred to the second column (i.e., column 2) is likely to be ∼5-10%. To address this loss in sensitivity, we report the development of a unique total-transfer (i.e., 100%) valve-based GC × GC, without adding complexity to the instrumentation. The new instrument design relies upon simply blocking one of the appropriate ports of the high-speed six-port diaphragm valve that is used as the modulator between columns 1 and 2. The modulation period and difference in head pressure between columns 1 and 2 are found to be the two primary variables that are controlled to provide good detection sensitivity and 100% mass transfer from column 1 to column 2. The detection sensitivity is better with a longer the modulation period. A limit of detection of 0.03 ng/μl was obtained for octane. This sensitive GC × GC configuration is also shown to provide acceptable separation peak capacity, with good separations achieved for real complex samples: gasoline and Eucalyptus oil, where compounds were spread out over much of the two-dimensional separation space. In principle, this total-transfer, valve-based GC × GC is more portable and less expensive than currently available GC × GC instrumentation.  相似文献   

2.
Multi-dimensional chromatographic techniques, such as (comprehensive) two-dimensional liquid chromatography and (comprehensive) two-dimensional gas chromatography, are increasingly popular for the analysis of complex samples, such as protein digests or mineral oils. The reason behind the popularity of these techniques is the superior performance, in terms of peak-production rate (peak capacity per unit time), that multi-dimensional separations offer compared to their one-dimensional counterparts. However, to fully utilize the potential of multi-dimensional chromatography it is essential that the separation mechanisms used in each dimension be independent of each other. In other words, the two separation mechanisms need to be orthogonal. A number of algorithms have been proposed in the literature for measuring chromatographic orthogonality. However, these methods have their limitations, such as reliance on the division of the separation space into bins, need for specialist software or requirement of advanced programming skills. In addition, some of the existing methods for measuring orthogonality include regions of the separation space that do not feature peaks. In this paper we introduce a number of equations which provides information on the spread of the peaks within the separation space in addition to measuring orthogonality, without the need for complex computations or division of the separation space into bins.  相似文献   

3.
Flow modulation of methane-doped carrier gas is used to visualize the second dimension hold-up time in GC × GC continuously throughout the run. This provides an internal reference of hold-up time and presents a straightforward means of examining retention in each dimension of GC × GC. Retention factors on similar and dissimilar column pairs are examined. Stationary phase bleed is shown to be retained by the second dimension column.  相似文献   

4.
A detailed mass map of C10's is required to better understand the mechanism of decalin catalytic ring opening/rearrangement. Conventional GC-FID or GC-MSD techniques could not accurately identify these isomers. Comprehensive two-dimensional gas-chromatography with MSD (GC × GC-MSD) proved to be a powerful tool for this purpose, due to its enhanced peak resolution. Analytical response quality was evaluated by the separation of two contiguous peaks and MS profile “clearness”. This allowed fragmentation study for nearly pure species. Tentative attributions, based on fragmentation-rearrangement in the MSD environment, were made after confirming that MS data bases routinely mistake olefins for cyclo-alkanes.  相似文献   

5.
In this work, the main developments and applications of multidimensional chromatographic techniques in food analysis are reviewed. Different aspects related to the existing couplings involving chromatographic techniques are examined. These couplings include multidimensional GC, multidimensional LC, multidimensional SFC as well as all their possible combinations. Main advantages and drawbacks of each coupling are critically discussed and their key applications in food analysis described.  相似文献   

6.
The identification and quantification of complex mixtures of cis and trans octadecenoic (18:1) fatty acid isomers presents a major challenge for conventional one-dimensional GC/FID analysis of their methyl esters. We have compared the use of two methods to achieve optimized separations of positional and geometrical octadecenoic fatty acid isomers—comprehensive two-dimensional gas chromatography (GC × GC), and silver ion high performance liquid chromatography interfaced to atmospheric pressure photoionization (APPI) mass spectrometry. Nine isomers of octadecenoic acid methyl ester were well separated on a single silver ion column with a mobile phase of 0.018% acetonitrile and 0.18% isopropanol in hexane. Reproducible retention times were obtained with relative standard deviations of around 1% over 5 injections. The extra selectivity and reproducibility afforded by APPI-MS, together with the wide separation of cis and trans isomers by silver ion chromatography, resulted in a promising method for measurement of octadecenoic acid FAME. The GC × GC separation was performed using various column combinations, and optimal separation was obtained by coupling an ionic liquid column (Supelco SLB-IL100 [1,9-di(3-vinyl-imidazolium) nonane bis(trifluoromethyl) sulfonyl imidate]) in the first dimension with a SGE BPX50 (50% phenyl polysilphenylene-siloxane) in the second dimension. These methods have been applied to the analysis of octadecenoic acid in milk and beef fat.  相似文献   

7.
In the case of a non-focusing modulator for comprehensive two-dimensional gas chromatography (GC × GC), the systematic distortions introduced when the modulator loads the second-dimension column give rise to a characteristic peak shape. Depending on the operating conditions this systematic distortion can be the dominant component of the second-dimension elution profiles in the GC × GC peak. The present investigation involved a systematic investigation of peak shape in pulsed-flow modulation (PFM)–GC × GC. It is shown that low flow ratio can lead to significant peak skewing and increasing the flow ratio reduces the magnitude of peak skewing. Validation of the peak shape model is made by comparison with experimental data. The residuals from the fitting process (normalised to the maximum detector response) vary between –1.5% and +2.6% for an isothermal model and between –1.0% and +3.0% for a temperature-programmed model.  相似文献   

8.
Monolithic columns invented in chromatographic praxis almost 40 years ago gained nowadays a lot of popularity in separations by liquid chromatographic technique. At the same time, application of monolithic columns in gas chromatography is less common and only a single review published by Svec et al. [1] covers this field of research. Since that time a lot of new findings on application and properties of monolithic columns in gas chromatography have been published in the literature deserving consideration and discussion. This review considers preparation of monolithic columns for GC, an impact of preparation conditions on column performance, optimization of separation conditions for GC analysis on monolithic columns and other important aspects of preparation and usage of monolithic capillary columns in GC. A final part of the review discusses the modern trends and possible applications in the future of capillary monolithic columns in GC.  相似文献   

9.
The application of comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC-TOFMS) for the analysis of six anabolic agents (AAs) in doping control is investigated in this work. A non-polar–polar column configuration with 0.2 μm film thickness (df) second dimension (2D) column was employed, offering much better spread of the components on 2D when compared to the alternative 0.1 μm df2D column. The proposed method was tested on the “key” AA that the World Anti-Doping Agency (WADA) had listed at the low ng mL−1 levels (clenbuterol, 19-norandrosterone, epimethendiol, 17α-methyl-5α-androstane-3α,17β-diol, 17α-methyl-5β-androstane-3α,17β-diol and 3′-OH-stanozolol). The compounds were spiked in a blank urine extract obtained by solid-phase extraction, hydrolysis and liquid–liquid extraction; prior to analysis they were converted to the corresponding trimethylsilyl (TMS) derivatives. The limit of detection (LOD) was below or equal to the minimum required performance limit (MRPL) of 2 ng mL−1 defined by WADA, and the correlation coefficient was in the range from 0.995 to 0.999. The method allows choosing an ion from the full mass spectra which shows the least interference from the matrix and/or the best sensitivity; this can only be done if full scan mass spectral data are available. The advantage of GC × GC over classical one-dimensional GC (1D GC), in terms of separation efficiency and sensitivity, is demonstrated on a positive urine control sample at a concentration of 5 ng mL−1. The obtained similarity to the in-house created TOFMS spectra library at this level of concentration was in the range from 822 to 932 (on the scale from 0 to 999). Since full mass spectral information are recorded, the method allows the retro-search of non-target compounds or new “designer steroids”, which cannot be detected with established GC–MS methods that use selected ion monitoring (SIM) mode.  相似文献   

10.
The determination of polycyclic aromatic hydrocarbon (PAH) metabolites in human urine is the method of choice for assessing exposure to carcinogenic compounds. The objective of this study was the development of a comprehensive two-dimensional gas chromatography (GC × GC) method using a flame ionisation detector (FID) to simultaneously determine 10 hydroxylated PAH. The method was based on enzymatic deconjugation, liquid–liquid extraction, and trimethylsilyl (TMS) derivatization of the analytes by microwave heating. Satisfactory separation was achieved. The coefficient of variance was 3.8–12.8%. LOD was 0.03–0.18 μg/L, and LOQ was 0.1–0.5 μg/L. The mean recovery was 76%. The method was applied to the analysis of urine from smokers and non-smokers.  相似文献   

11.
The present research is based on the full exploitation of the separation power of a 0.05 mm internal diameter (ID) capillary, as a comprehensive two-dimensional (2D) GC (GC × GC) secondary column, with the objective of attaining very high-resolution second dimension separations. The aim was achieved by using a split-flow system developed in previous research [P.Q. Tranchida, A. Casilli, P. Dugo, G. Dugo, L. Mondello, Anal. Chem. 79 (2007) 2266], and a dual-oven GC × GC instrument. The column combination employed consisted of a polar 30 m × 0.25 mm ID column connected, by means of a T union, to a detector-linked high-resolution 1.1 m × 0.05 mm ID apolar analytical column and to a 0.33 m × 0.05 mm ID retention gap; the latter was connected to a manually operated split valve. As previously demonstrated, the use of a split valve enables the regulation of gas flows through both analytical columns, generating the most appropriate gas linear velocities. Comprehensive 2D GC experiments were carried out on Arabica roasted coffee volatiles (previously extracted by means of solid-phase microextraction) with the split-valve closed (equal to what can be defined as conventional GC × GC) and with the split-valve opened at various degrees. The reasons why it is absolutely not effective to use a 0.05 mm ID column as second dimension in a conventional GC × GC instrument will be discussed and demonstrated. On the contrary, the use of a 0.05 mm ID column as second dimension, under ideal conditions in a split-flow, twin-oven system, will also be illustrated and discussed.  相似文献   

12.
The objective of the present research is directed towards the optimized use of a 50 μm ID secondary column, in a comprehensive two-dimensional gas chromatography–quadrupole mass spectrometry (GC × GC–qMS) system. The analytical aim was achieved by exploiting a split-flow GC × GC approach, and a rapid-scanning qMS instrument. The stationary phase combination consisted of an apolar (silphenylene polymer) 30 m × 0.25 mm ID column, linked by means of a Y-union, to an MS-connected 1 m × 0.05 mm ID polar one [poly(ethyleneglycol)], and to a 0.20 m × 0.05 mm ID uncoated capillary segment; the latter was connected to a manually operated split-valve. It will be herein demonstrated that the split-flow GC × GC approach, successfully employed in previous H2-based, flame ionization detection experiments, provides equally satisfactory results using mass spectrometric detection and helium as carrier gas. An optimized split-flow GC × GC–qMS method was developed and exploited for the analysis of a perfume sample. The results attained were compared with those observed using the same analytical column combination, but with no flow-splitting. It was found that it is not convenient to employ a 50 μm ID secondary column in a conventional GC × GC–MS instrument. On the contrary, the use a 50 μm ID secondary column, in a split-flow, twin-oven system, provided a good performance. A recently developed comprehensive chromatography software was used for data processing.  相似文献   

13.
Two-dimensional gas chromatography (GC × GC) coupled with time-of-flight mass spectrometric (TOFMS) method was optimized for simultaneous analysis of 160 pesticides, 12 dioxin-like polychlorinated biphenyls (PCBs), 12 polyaromatic hydrocarbons (PAHs) and bisphenol A in grape and wine. GC × GC–TOFMS could separate all the 185 analytes within 38 min with >85% NIST library-based mass spectral confirmations. The matrix effect quantified as the ratio of the slope of matrix-matched to solvent calibrations was within 0.5–1.5 for most analytes. LOQ of most of the analytes was ≤10 μg/L with nine exceptions having LOQs of 12.5–25 μg/L. Recoveries ranged between 70 and 120% with <20% expanded uncertainties for 151 and 148 compounds in grape and wine, respectively, with intra-laboratory Horwitz ratio <0.2 for all analytes. The method was evaluated in the incurred grape samples where residues of cypermethrin, permethrin, chlorpyriphos, metalaxyl and etophenprox were detected at below MRL.  相似文献   

14.
This paper reports the conditions of online hyphenation of supercritical fluid chromatography (SFC) with twin comprehensive two-dimensional gas chromatography (twin-GC × GC) for detailed characterization of middle distillates; this is essential for a better understanding of reactions involved in refining processes. In this configuration, saturated and unsaturated compounds that have been fractionated by SFC are transferred on two different GC × GC columns sets (twin-GC × GC) placed in the same GC oven. Cryogenic focusing is used for transfer of fractions into the first dimension columns before simultaneous GC × GC analysis of both saturated and unsaturated fractions. The benefits of SFC–twin-GC × GC are demonstrated for the extended alkane, iso-alkane, alkene, naphthenes and aromatics analysis (so-called PIONA analysis) of diesel samples which can be achieved in one single injection. For that purpose, saturated and unsaturated compounds have been separated by SFC using a silver loaded silica column prior to GC × GC analysis. Alkenes and naphthenes are quantitatively recovered in the unsaturated and saturated fractions, respectively, allowing their identification in various diesel samples. Thus, resolution between each class of compounds is significantly improved compared to a single GC × GC run, and for the first time, an extended PIONA analysis of diesel samples is presented.  相似文献   

15.
Comprehensive two-dimensional gas chromatography (GC × GC) offers an interesting tool for profiling bacterial fatty acids. Flow modulated GC × GC using a commercially available system was evaluated, different parameters such as column flows and modulation time were optimized. The method was tested on bacterial fatty acid methyl esters (BAMEs) from Stenotrophomonas maltophilia LMG 958T by using parallel flame ionization detector (FID)/mass spectrometry (MS). The results are compared to data obtained using a thermal modulated GC × GC system. The data show that flow modulated GC × GC-FID/MS method can be applied in a routine environment and offers interesting perspectives for chemotaxonomy of bacteria.  相似文献   

16.
Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC–TOFMS) is a well-established instrumental platform for complex samples. However, chemometric data analysis is often required to fully extract useful information from the data. We demonstrate that retention time shifting from one modulation to the next, Δ2tR, is not sufficient alone to quantitatively describe the trilinearity of a single GC × GC–TOFMS run for the purpose of predicting the performance of the chemometric method parallel factor analysis (PARAFAC). We hypothesize that analyte peak width on second dimension separations, 2Wb, also impacts trilinearity, along with Δ2tR. The term trilinearity deviation ratio, TDR, which is Δ2tR normalized by 2Wb, is introduced as a quantitative metric to assess accuracy for PARAFAC of a GC × GC–TOFMS data cube. We explore how modulation ratio, MR, modulation period, PM, temperature programming rate, Tramp, sampling phase (in-phase and out-of-phase), and signal-to-noise ratio, S/N, all play a role in PARAFAC performance in the context of TDR. Use of a PM in the 1–2 s range provides an optimized peak capacity for the first dimension separation (500–600) for a 30 min run, with an adequate peak capacity for the second dimension separation (12–15), concurrent with an optimized two-dimensional peak capacity (6000–7500), combined with sufficiently low TDR values (0–0.05) to facilitate low quantitative errors with PARAFAC (0–0.5%). In contrast, use of a PM in the 5 s or greater range provides a higher peak capacity on the second dimension (30–35), concurrent with a lower peak capacity on the first dimension (100–150) for a 30 min run, and a slightly reduced two-dimensional peak capacity (3000–4500), and furthermore, the data are not sufficiently trilinear for the more retained second dimension peaks in order to directly use PARAFAC with confidence.  相似文献   

17.
It is important to develop methods of optimizing the selection of column sets and operating conditions for comprehensive two-dimensional gas chromatography. A new method for the calculation of the percentage of separation space used was developed using Delaunay's triangulation algorithms (convex hull). This approach was compared with an existing method and showed better precision and accuracy. It was successfully applied to the selection of the most convenient column set and the geometrical parameters of second column for the analysis of 49 target compounds in wastewater.  相似文献   

18.
Multidimensional gas-chromatographic analyses of olesochemically based nonionic, anionic and several cationic surfactants in industrial cleaners are demonstrated. Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry allows the simultaneous determination of fatty alcohols, fatty alcohol sulphates and alkyl polyglucosides. In addition, the determination of fatty alcohol ethoxylates up to C10EO8 (highest degree of ethoxylation) and C18EO5 (longest C-chain at an ethoxylation degree of five) and the analysis of fatty alcohol alkoxylates that contain ethoxy (EO) and propoxy (PO) groups could be realized. Because of decomposition in the injector and a weak EI-fragmentation, cationic surfactants such as alkyl benzyl dimethyl ammonium chloride could also be identified by their characteristic fragments. Thermogravimetric analyses confirmed that the temperature in a normal GC injector is not high enough to cause thermal decomposition of esterquats. However, we could demonstrate that a modified silylation procedure forms decomposition products of esterquats in the GC injector which are detectable by GC × GC–(TOF)MS and allows the identification of such GC-atypical analytes.  相似文献   

19.
In this study, a new system for analysis using a dual comprehensive two-dimensional gas chromatography/targeted multidimensional gas chromatography (switchable GC × GC/targeted MDGC) analysis was developed. The configuration of this system not only permits the independent operation of GC, GC × GC and targeted MDGC analyses in separate analyses, but also allows the mode to be switched from GC × GC to targeted MDGC any number of times through a single analysis. By incorporating a Deans switch microfluidics transfer module prior to a cryotrapping device, the flow stream from the first dimension column can be directed to either one of two second dimension columns in a classical heart-cutting operation. Both second columns pass through the cryotrap to allow solute bands to be focused and then rapidly remobilized to the respective second columns. A short second column enables GC × GC operation, whilst a longer column is used for targeted MDGC. Validation of the system was performed using a standard mixture of compounds relevant to essential oil analysis, and then using compounds present at different abundances in lavender essential oil. Reproducibility of retention times and peak area responses demonstrated that there was negligible variation in the system over the course of multiple heart-cuts, and proved the reliable operation of the system. An application of the system to lavender oil, as a more complex sample, was carried out to affirm system feasibility, and demonstrate the ability of the system to target multiple components in the oil. The system was proposed to be useful for study of aroma-impact compounds where GC × GC can be incorporated with MDGC to permit precise identification of aroma-active compounds, where heart-cut multidimensional GC-olfactometry detection (MDGC-O) is a more appropriate technology for odour assessment.  相似文献   

20.
A number of chiral oxime compounds have been synthesised and their gas chromatographic analysis on both a polyethelene glycol phase column and two chiral column phases was investigated. Of particular interest to this work is the observation of dynamic interconversion behaviour, both in a single dimensional analysis, and by using comprehensive two-dimensional gas chromatography (GC × GC). A number of non-chiral compounds were studied as a means to understand the nature of the behaviour observed. As expected, the achiral compound on both the wax column and the chiral column generated two isomeric compounds—the E and Z isomers. On the wax column, a characteristic interconversion zone representing the dynamic process was observed, with extent of interconversion dependent on the conditions used. For the chiral compounds, two isomers and the interconversion zone were exhibited on the wax column, however on the chiral column 4 isomeric peaks were found—the (R) and (S) enantiomers of each of the E and Z isomers. In the case of the chiral column, the extent of interconversion was negligible, and this appears to correlate with the use of low polarity columns. In order to encourage dynamic interconversion, a polyethylene glycol column was coupled to the chiral column, by placing it either before or after the chiral column. In this case a monitor detector was employed between the two columns in order to isolate the effects of the first column from the behaviour on the second. In a further study, the most appropriate column arrangement from the earlier study was placed into a comprehensive two-dimensional gas chromatography instrument, with a wax-phase column in the second dimension. The unique location of peaks for each of the molecules in 2D space and patterns for the interconversion processes is interpreted phenomenologically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号