首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamic binding capacities and resolution of PEGylated lysozyme derivatives with varying molecular weights of poly (ethylene) glycol (PEG) with 5 kDa, 10 kDa and 30 kDa for HIC resins and columns are presented. To find the optimal range for the operating conditions, solubility studies were performed by high-throughput analyses in a 96-well plate format, and optimal salt concentrations and pH values were determined. The solubility of PEG-proteins was strongly influenced by the length of the PEG moiety. Large differences in the solubilities of PEGylated lysozymes in two different salts, ammonium sulfate and sodium chloride were found. Solubility of PEGylated lysozyme derivatives in ammonium sulfate decreases with increased length of attached PEG chains. In sodium chloride all PEGylated lysozyme derivatives are fully soluble in a concentration range between 0.1 mg protein/ml and 10 mg protein/ml. The binding capacities for PEGylated lysozyme to HIC resins are dependent on the salt type and molecular weight of the PEG polymer. In both salt solutions, ammonium sulfate and sodium chloride, the highest binding capacity of the resin was found for 5 kDa PEGylated lysozyme. For both native lysozyme and 30 kDa mono-PEGylated lysozyme the binding capacities were lower. In separation experiments on a TSKgel Butyl-NPR hydrophobic-interaction column with ammonium sulfate as mobile phase, the elution order was: native lysozyme, 5 kDa mono-PEGylated lysozyme and oligo-PEGylated lysozyme. This elution order was found to be reversed when sodium chloride was used. Furthermore, the resolution of the three mono-PEGylated forms was not possible with this column and ammonium sulfate as mobile phase. In 4 M sodium chloride a resolution of all PEGylated lysozyme forms was achieved. A tentative explanation for these phenomena can be the increased solvation of the PEG polymers in sodium chloride which changes the usual attractive hydrophobic forces in ammonium sulfate to more repulsive hydration forces in this hydrotrophic salt.  相似文献   

2.
Pressure–flow curves are obtained for a new protein A adsorbent matrix based on macroporous hydrophilic polymer beads with average diameter of 57 μm and a narrow particle size distribution. Experimental data are obtained in a 1 cm diameter laboratory column and in preparative scale columns with diameters of 20, 30, and 45 cm. The results are consistent with a model that assumes a linear relationship between bed compression and relative flow velocity. Surprisingly, the packing compressibility is essentially independent of column diameter for the preparative columns. As a result, after accounting for the variation in extraparticle porosity caused by compression, the column pressure drop is accurately predictable using the Carman–Kozeny equation. A model is also developed to predict productivity for IgG capture as a function of operating conditions based on dynamic binding capacity data presented in Part I of this work. For typical conditions, the model predicts maximum productivity at low residence times, between 1 and 1.5 min, when the dynamic binding capacity is at about 70–80% of the maximum. Combining the two models for column pressure and for dynamic binding capacity allows the design of preparative scale columns that maximize productivity while meeting specified pressure constraints.  相似文献   

3.
Different models have been described in the literature to evaluate the total porosity of CEC columns: gravimetric, flow as well as conductivity-based methods. In this study, these models have been compared for two kinds of CEC columns: two mixed-mode silica particle stationary phases and different monolithic columns (acrylate or polystyrene divinylbenzene-based). The total porosities measured from the conductivity-based methods were lower than the total column porosities obtained by gravimetric or flow methods for all the investigated columns while the wide distribution of observed values shows that conductivity-based methods discriminate columns more efficiently with very different properties. We propose a conductivity-based method taking into account the actual length proposed by Horvath, to evaluate what we call an "actual electrokinetic" porosity (AEP). This parameter, based on electrokinetic theory only, affords the most consistent evaluation of porosity under experimental CEC conditions for the packed- and acrylate-based monolithic columns. To illustrate the potential of AEP and actual EOF for the estimation of the performances of a CEC system (stationary and mobile phases) we studied the influence of the mobile-phase composition on these parameters for CEC separations with an ammonium embedded packed stationary phase. The AEP and the actual electroosmotic mobility should allow a better understanding of the perfusive EOF and stationary-phase wettability. For neutral compounds (substituted phenols), AEP evaluation allowed us to predict the mobile-phase conditions able to enhance the efficiency while both AEP and actual EOF had to be considered in the case of peptide analysis.  相似文献   

4.
The effect of PEGylation on cation exchange chromatography was studied with poly(ethylene glycol) of different chain lengths (5 kDa, 10 kDa and 30 kDa) using lysozyme as a model system. A stable binding via reduction of a Schiff base was formed during random PEGylation on lysine residues with methoxy-PEG-aldehyde. A purification method for PEGylated proteins using cation exchange chromatography was developed, and different isoforms of mono-PEGylated lysozyme were isolated. TSKgel SP-5PW and Toyopearl GigaCap S-650M showed the best performance of all tested cation exchange resins, and the separation of PEGylated lysozyme could be also scaled up to semi-preparative level. Size-exclusion chromatography, SDS-PAGE and MALDI-TOF mass spectrometry were used for analysis. Separated mono-PEGylated lysozyme of different sizes was used to determine dynamic binding capacities (DBC) and selectivity of cation exchange chromatography resins. An optimization of binding conditions resulted in a more than 20-fold increase of DBC for Toyopearl GigaCap S-650M with 30 kDa mono-PEGylated lysozyme.  相似文献   

5.
An organically modified silicate (ORMOSIL) SPME stationary phase molecularly imprinted with BDE-209 has been successfully fabricated by conventional sol-gel technique from phenyltrimethoxysilane and tetraethoxysilane. The thickness of the ORMOSIL-SPME stationary phase, on fused-silica optical fibres, was measured to be ca. 9.5 μm with a volume of ca. 0.12 μL. Rebinding assays and Scatchard analysis revealed that the imprinted ORMOSIL-SPME stationary phase possessed a binding affinity, KB, of 7.3 ± 1.7 × 1010 M−1 for BDE-209, with a receptor site density, Bmax, of 1.2 × 10−3 pmol per SPME device. Besides its molecular template, the ORMOSIL-SPME stationary phase also showed good affinity (log KB ≥ 9.5) for smaller BDE congeners commonly found in the natural environment. The density of receptor sites within the imprinted matrix for those smaller BDE congeners was even higher than that for BDE-209. This may be attributable to the binding site heterogeneity of the imprinting process that creates deformed binding sites that are suitable for the accommodation of the smaller BDE congeners. Compared to the commercially available polyacrylate and polydimethylsiloxane SPME stationary phases, the imprinted ORMOSIL-SPME devices showed much higher pre-concentration ability towards polybrominated diphenyl ethers (PBDEs), even in direct immersion sampling at room temperature. Coupled with GC-NCI-MS and GC-μECD, the imprinted ORMOSIL-SPME device was able to achieve detection sensitivity of 0.2-3.6 pg mL−1 and 1-8.8 pg mL−1, respectively, for commonly occurring BDE congeners, including medium to high molecular weight PBDEs. The imprinted ORMOSIL-SPME device has been successfully applied to monitor PBDE contents in municipal wastewaters.  相似文献   

6.
A straightforward group contribution model based on thermodynamic parameters was developed to predict retention times for a series of alcohols and ketones on three different stationary phases. Thermodynamic parameters determined from gas chromatographic retention data for structurally similar compounds via a three-parameter model were used to predict the retention times of test molecules consisting of ketones and alcohols. The model worked well for the compounds tested with a root mean square error of prediction of 5.50 s across all compounds, phases, and temperature ranges studied. Considering just the alcohols, the error of prediction was 2.79 s across all phases and temperatures.  相似文献   

7.
An epoxy-based monolith has been developed for use as hydrophilic support in bioseparation. This monolith is produced by self-polymerization of polyglycerol-3-glycidyl ether in organic solvents as porogens at room temperature within 1 h. One receives a highly cross-linked structure that provides useful mechanical properties. The porosity and pore diameter can be controlled by varying the composition of the porogen. In this work, an epoxy-based monolith with a high porosity (79%) and large pore size (22 μm) is prepared and used in affinity capturing of bacterial cells. These features allow the passage of bacterial cells through the column. As affinity ligand polymyxin B is used, which allows the binding of gram-negative bacteria. The efficiency of the monolithic affinity column is studied with Escherichia coli spiked in water. Bacterial cells are concentrated on the column at pH 4 and eluted with a recovery of 97 ± 3% in 200 μL by changing the pH value without impairing viability of bacteria. The dynamic capacity for the monolithic column is nearly independent of the flow rate (4 × 109 cells/column). Thereby, it is possible to separate and enrich gram-negative bacterial cells, such as E. coli, with high flow rates (10 mL/min) and low back pressure (<1 bar) in a volume as low as 200 μL compatible for real-time polymerase chain reaction, microarray formats, and biosensors.  相似文献   

8.
The effect of salt or peptide concentration on peptide porosity (i.e. the porosity accessible to a given peptide) is investigated on six different reversed-phase stationary phases. The peptide porosity is found to increase with the local concentration of negative charges following a saturation-type function within the same porosity boundaries for both cases. This can induce the formation of anti-Langmuirian peaks in non-adsorbing conditions since the local increase of the ionic strength due to the peptide concentration increases the porosity accessible to the peptide. This behavior can be well reproduced by the ideal model of chromatography assuming non-constant porosity. The acetonitrile adsorption isotherm was also measured on all the considered reversed-phase stationary phases. A comparison between the stationary phases shows a correlation between the amount of acetonitrile accumulated in the pores and the reduced pore accessibility for the peptide.  相似文献   

9.
Cation exchange chromatography using conventional resins, having either diffusive or perfusive flow paths, operated in bind-elute mode has been commonly employed in monoclonal antibody (MAb) purification processes. In this study, the performance of diffusive and perfusive cation exchange resins (SP-Sepharose FF (SPSFF) and Poros 50HS) and a convective cation exchange membrane (Mustang S) and monolith (SO(3) Monolith) were compared. All matrices were utilized in an isocratic state under typical binding conditions with an antibody load of up to 1000 g/L of chromatographic matrix. The dynamic binding capacity of the cation exchange resins is typically below 100 g/L resin, so they were loaded beyond the point of anticipated MAb break through. All of the matrices performed similarly in that they effectively retained host cell protein and DNA during the loading and wash steps, while antibody flowed through each matrix after its dynamic binding capacity was reached. The matrices differed, though, in that conventional diffusive and perfusive chromatographic resins (SPSFF and Poros 50HS) demonstrated a higher binding capacity for high molecular weight species (HMW) than convective flow matrices (membrane and monolith); Poros 50HS displayed the highest HMW binding capacity. Further exploration of the conventional chromatographic resins in an isocratic overloaded mode demonstrated that the impurity binding capacity was well maintained on Poros 50HS, but not on SPSFF, when the operating flow rate was as high as 36 column volumes per hour. Host cell protein and HMW removal by Poros 50HS was affected by altering the loading conductivity. A higher percentage of host cell protein removal was achieved at a low conductivity of 3 mS/cm. HMW binding capacity was optimized at 5 mS/cm. Our data from runs on Poros 50HS resin also showed that leached protein A and cell culture additive such as gentamicin were able to be removed under the isocratic overloaded condition. Lastly, a MAb purification process employing protein A affinity chromatography, isocratic overloaded cation exchange chromatography using Poros 50HS and anion exchange chromatography using QSFF in flow through mode was compared with the MAb's commercial manufacturing process, which consisted of protein A affinity chromatography, cation exchange chromatography using SPSFF in bind-elute mode and anion exchange chromatography using QSFF in flow through mode. Comparable step yield and impurity clearance were obtained by the two processes.  相似文献   

10.
Silica particles have been used as supports for the preparation of three different propazine-imprinted polymer formats. First format refers to grafting of thin films of molecularly imprinted polymers (MIPs) using an immobilised iniferter-type initiator (inif-MIP). The other two new formats were obtained by complete filling of the silica pores with the appropriate polymerisation mixture leading to a silica-MIP composite material (c-MIP) followed by the dissolution of the silica matrix resulting in spherical MIP beads (dis-MIP). These techniques offer a mean of fine-tuning the particle morphology of the resulting MIP particles leading to enhanced capacity in chromatographic applications. Porous silica (specific surface area S = 380 m2 g−1, particle size ps = 10 μm, pore volume Vp = 1.083 ml g−1 and pore diameter dp = 10.5 nm), methacrylic acid and ethylenglycol dimethacrylate were used for the preparation of the materials. All the MIP formats imprinted with propazine have been characterised by elemental analysis, FT-IR spectroscopy, nitrogen adsorption and scanning electron microscopy. Further, the materials were assessed as stationary phases in HPLC. Capacity factors, imprinting factors and theoretical plate numbers were calculated for propazine and other related triazines in order to compare the chromatographic properties of the three different stationary phases. For the inif-MIPs the column efficiency depended strongly on the amount of grafted polymer. Thus, only the polymers grafted as thin films of ca. 1.3 nm average thickness show imprinting effects and the highest column efficiency giving plate numbers (N) of 1600 m−1 for the imprinted propazine. The performance of the c-MIP stationary phase decreases as result of the complete pore filling after polymerisation and increases again after the removal of the silica matrix due to a better mass transfer in the porous mirror-image resulting polymer. From this study can be concluded that the inif-MIP shows the best efficiency for use as stationary phase in HPLC for the separation of triazinic herbicides.  相似文献   

11.
In order to elucidate the effect of the polymerisation time on the morphology of styrene based monolithic support materials, continuous poly(1,2-bis(p-vinylphenyl))ethane (BVPE) rods were synthesised in 1.0 ml glass vials by thermally initiated free radical polymerisations of BVPE in the presence of porogens (toluene, decanol) and a,a′-azoisobutyronitrile (AIBN) as initiator at 65 °C for different polymerisation times (60, 90, 150, 300 and 600 min). Porosity parameters like pore-size-distribution and total porosity were investigated by mercury intrusion porosimetry, while the specific surface area of the BVPE monolithic supports was determined by N2-adsorption (BET) measurements. An untypical bimodal pore-size-distribution comprising a high fraction of both mesopores (2–50 nm) and macropores (mainly flow-channels in the micrometer range) was observed as a result of the stepwise decrease of the polymerisation time. In consequence of the significant changes of the pore-size-profile, shortening the polymerisation time also resulted in enhanced total porosity due to enlarged flow-channel diameters and increased surface area according to the presence of a considerable amount of mesopores. Results upon the porosity profile of the support are further confirmed by SEM images of monoliths polymerised for different time periods. Since mesoporosity and high surface area of the chromatographic support material play key roles in the interaction and thus retention of low-molecular-weight compounds, polymerisation time should also affect the chromatographic properties and applicability of these polymers. To study the influence of the polymerisation time towards the separation efficiency of small molecules on BVPE capillary columns (200 μm I.D., 8 cm), a mixture of homologous alkylbenzenes was chosen for column evaluation. In accordance with the observations of the porous properties of BVPE stationary phases, the rapid and high resolution separation of a range of low-molecular-weight compounds on monolithic BVPE supports were successfully realised. The methodical reduction of the polymerisation time has been demonstrated to be a simple and effective tool to tailor the porous properties of organic monoliths to provide novel polymer-based stationary phases with porous properties adequate for the rapid and high resolution chromatography of small organic molecules.  相似文献   

12.
For the separation of aromatic amines, two types of monodispersed porous polymer resins were prepared by the copolymerization of 2-vinylpyridine and 4-vinylpyridine with divinylbenzene in the presence of template silica gel particles (particle size 5 μm), followed by dissolution of the template silica gel in an alkaline solution. The transmission electron micrographs and the scanning electron micrograph revealed that these templated polymer resins have a spherical morphology with a good monodispersity and porous structure. Using these monodispersed polymer resins, the high-performance liquid chromatographic separation of aromatic amines in the mobile phases of pHs 2.0, 2.9, 4.1, 7.2 and 11.7 were carried out. The 2-vinylpyridine–divinylbenzene copolymer resins showed slightly stronger retentions for aromatic amines than the 4-vinylpyridine–divinylbenzene copolymer resins. Under acidic conditions (around pH 2.0), aniline and the toluidines showed no retention on these copolymer resins due to the repulsion between the cationic forms of these amines and pyridinium cations in the stationary phase, whereas less basic aromatic amines or non-basic acetanilide showed slight retentions. Above pH 4.1, the separation of aromatic amines with these polymer resins showed a typical reversed-phase mode separation. Therefore, the separation patterns of aromatic amines are effectively tunable by changing the pH value of the mobile phases. A good separation of eight aromatic amines was achieved at pH 2.9 using the 2-vinylpyridine–divinylbenzene copolymer resins.  相似文献   

13.
The nature and extent of mixed-mode retention mechanisms evident for three structurally related, agglomerated, particle-based stationary phases were evaluated. These three agglomerated phases were Thermo Fisher ScientificIon PacAS11-HC – strong anion exchange, Thermo Fisher Scientific IonPac CS10 – strong cation-exchange PS-DVB, and the Thermo Fisher Scientific Acclaim Trinity P1silica-based substrate, which is commercially marketed as a mixed-mode stationary phase. All studied phases can exhibit zwitterionic and hydrophobic properties, which contribute to the retention of charged organic analytes. A systematic approach was devised to investigate the relative ion-exchange capacities and hydrophobicities for each of the three phases, together with the effect of eluent pH upon selectivity, using a specifically selected range of anionic, cationic and neutral aromatic compounds. Investigation of the strong anion-exchange column and the Trinity P1 mixed-mode substrate, in relation to ion-exchange capacity and pH effects, demonstrated similar retention behaviour for both the anionic and ampholytic solutes, as expected from the structurally related phases. Further evaluation revealed that the ion-exchange selectivity of the mixed-mode phase exhibited properties similar to that of the strong anion-exchange column, with secondary cation-exchange selectivity, albeit with medium to high anion-exchange and cation-exchange capacities, allowing selective retention for each of the anionic, cationic and ampholytic solutes. Observed mixed-mode retention upon the examined phases was found to be a sum of anion- and cation-exchange interactions, secondary ion-exchange and hydrophobic interactions, with possible additional hydrogen bonding. Hydrophobic evaluation of the three phases revealed log P values of 0.38–0.48, suggesting low to medium hydrophobicity. These stationary phases were also benchmarked against traditional reversed-phase substrates namely, octadecylsilica YMC-Pac Pro C18 and neutral μPS-DVB resin IonPac NS1-5u, yielding log P values of 0.57 and 0.52, respectively.  相似文献   

14.
In order to elucidate the role of the flow-through characteristics with regard to the column performance in high-performance liquid chromatography (HPLC) native and n-octadecyl bonded monolithic silica rods and columns, respectively of 100 mm length and 4.6 mm ID with mesopores in the range between 10 and 25 nm and macropores in the range between 0.7 and 6.0 μm were examined by mercury intrusion/extrusion, scanning electron microscopy, image analysis and permeability. The obtained data of the flow-through pore sizes and porosity values as well as surface-to-volume ratio of the stationary phase skeleton enabled to predict their influence to the chromatographic separation efficiency. Our data demonstrate that mercury porosimetry is a reliable technique to obtain all the characteristic parameters of the flow-through pores of silica monoliths. An important result of our examination was that the surface-to-volume ratio of monolithic silica skeletons had more significant impact to the separation process, rather than the average flow-through pore sizes. We could also show the essential differences between the particulate and monolithic stationary phases based on theoretical computation. The results, obtained from other characterization methods also indicated the structural complexity of monolithic silica samples. Permeability of columns is a generally applicable parameter to characterize all chromatographic phases no matter the chemistry or format. The correlation coefficient obtained for mercury intrusion and permeability of water was 0.998, though our investigation revealed that the surface modification is more likely influencing the obtained results. Further, the assumption of the cylindrical morphology of flow-through pores is not relevant to the investigated monolithic silica columns. These results on the morphology of the flow-through pores and of the skeletons were confirmed by the image analysis as well. Our main finding is that the flow-through pore sizes are not relevant for the estimation of the chromatographic separation efficiency of monolithic silica columns.  相似文献   

15.
The paper describes a research of possible application of UTEVA and TRU resins and anion exchanger AMBERLITE CG-400 in nitrate form for the isolation of uranium and thorium from natural samples. The results of determination of distribution coefficient have shown that uranium and thorium bind on TRU and UTEVA resins from the solutions of nitric and hydrochloric acids, and binding strength increases proportionally to increase the concentration of acids. Uranium and thorium bind rather strongly to TRU resin from the nitric acid in concentration ranging from 0.5 to 5 mol L−1, while large quantities of other ions present in the sample do not influence on the binding strength. Due to the difference in binding strength in HCl and HNO3 respectively, uranium and thorium can be easily separated from each other on the columns filled with TRU resin. Furthermore, thorium binds to anion exchanger in nitrate form from alcohol solutions of nitric acid very strongly, while uranium does not, so they can be easily separated. Based on these results, we have created the procedures of preconcentration and separation of uranium and thorium from the soil, drinking water and seawater samples by using TRU and UTEVA resins and strong base anion exchangers in nitrate form. In one of the procedures, uranium and thorium bind directly from the samples of drinking water and seawater on the column filled with TRU resin from 0.5 mol L−1 HNO3 in a water sample. After binding, thorium is separated from uranium with 0.5 mol L−1 HCl, and uranium is eluted with deionised water. By applying the described procedure, it is possible to achieve the concentration factor of over 1000 for the column filled with 1 g of resin and splashed with 2 L of the sample. Spectrophotometric determination with Arsenazo III, with this concentration factor results in detection limits below 1 μg L−1 for uranium and thorium. In the second procedure, uranium and thorium are isolated from the soil samples with TRU resin, while they are separated from each other on the column filled with anion exchanger in alcohol solutions. Anion exchanger combined with alcohol solutions enables isolation of thorium from soil samples and its separation from a wide range of elements, as well as spectrophotometric determination, ICP-MS determination, and other determination techniques.  相似文献   

16.
This review is concerned with the phenomenological fluid dynamics in capillary and chip electrochromatography (EC) using high-surface-area random porous media as stationary phases. Specifically, the pore space morphology of packed beds and monoliths is analyzed with respect to the nonuniformity of local and macroscopic EOF, as well as the achievable separation efficiency. It is first pointed out that the pore-level velocity profile of EOF through packed beds and monoliths is generally nonuniform. This contrasts with the plug-like EOF profile in a single homogeneous channel and is caused by a nonuniform distribution of the local electrical field strength in porous media due to the continuously converging and diverging pores. Wall effects of geometrical and electrokinetic nature form another origin for EOF nonuniformities in packed beds which are caused by packing hard particles against a hard wall with different zeta potential. The influence of the resulting, systematic porosity fluctuations close to the confining wall over a distance of a few particle diameters becomes aggravated at low column-to-particle diameter ratio. Due to the hierarchical structure of the pore space in packed beds and silica-based monoliths which are characterized by discrete intraparticle (intraskeleton) mesoporous and interparticle (interskeleton) macroporous spatial domains, charge-selective transport prevails within the porous particles and the monolith skeleton under most general conditions. It forms the basis for electrical field-induced concentration polarization (CP). Simultaneously, a finite and -- depending on morphology -- often significant perfusive EOF is realized in these hierarchically structured materials. The data collected in this review show that the existence of CP and its relative intensity compared to perfusive EOF form fundamental ingredients which tune the fluid dynamics in EC employing monoliths and packed beds as stationary phases. This addresses the (electro)hydrodynamics, associated hydrodynamic dispersion, as well as the migration and retention of charged analytes.  相似文献   

17.
This paper details the use of cholesterol as a mobile phase additive and stationary phase complexing agent in reversed-phase liquid chromatography. Cholesterol loading onto a typical C18 stationary phase is examined. It is found that, when using a standard 150 mm × 4.6 mm column, between 5.0 and 50.0 mg of cholesterol can be loaded by choosing appropriate values of mobile phase composition and cholesterol concentration. Adding cholesterol to the stationary phase is shown to have an effect on shape and phenyl selectivities, but not on methylene selectivity. Most notably, selectivity of triphenylene and o-terphenyl is increased from 1.08 to 1.49 by adding cholesterol to the chromatographic system. Phenyl-group selectivity shows a more modest but real increase in selectivity as well. Cholesterol-loaded stationary phases are demonstrated to be stable after cholesterol is removed from the mobile phase, for at least 250 column volumes, when mobile phases of 70% methanol or less are used.  相似文献   

18.
Using an HPLC column packed with monodispersed vinylbenzeneboronic acid–divinylbenzene (V–D) copolymer resins, the elution behaviors of the mono- and disaccharides were studied under different pH mobile phases. The monodispersed V–D copolymer resins were prepared by the copolymerization of 4-vinylbenzeneboronic acid and divinylbenzene in the presence of template silica gel particles (particle size: 5 μm; pore size: 10 nm), followed by dissolution of the template silica gel using a NaOH solution. Similarly, styrene–divinylbenzene (S–D) copolymer resins as the control resins were also synthesized. The transmission electron micrographs of these polymer resins revealed a good monodispersity. The complexation behavior of the saccharides was evaluated by comparison of the peak area eluted through the V–D column for that through the S–D column. Four aldopentoses (d-ribose, d-arabinose, d-xylose, and d-lyxose) and four aldohexoses (d-glucose, d-mannose, d-galactose, and d-talose) were retained completely at pH 11.9. Especially, ribose and talose were totally retained even under acidic and neutral conditions. For the disaccharides, unlike sucrose and maltose, palatinose was completely retained in basic mobile phases.  相似文献   

19.
A new method for the fixation of polymethacrylate monoliths within titanium tubing of up to 0.8 mm I.D. for use as a chromatographic column under elevated temperatures and pressures is described. The preparation of butyl methacrylate–ethylene dimethacrylate-based monolithic stationary phases with desired porous structures was achieved within titanium tubing with pre-oxidised internal walls. The oxidised titanium surface was subsequently silanised with 3-trimethoxysilylpropyl methacrylate resulting in tight bonding of butyl methacrylate porous monolith to the internal walls, providing stationary phase stability at column temperatures up to 110 °C and at operating column pressure drops of >28 MPa. The titanium housed monoliths exhibited a uniform and dense porous structure, which provided peak efficiencies of up to 59,000 theoretical plates per meter when evaluated for the separation of small molecules in reversed-phase mode, under optimal conditions (achieved at 15 μL/min and temperature of 110 °C for naphthalene with a retention factor, k = 0.58). The developed column was applied to the reversed-phase isocratic separation of a text mixture of pesticides.  相似文献   

20.
Ting Li 《Talanta》2009,80(2):889-3607
In this work, biomimetic technique was proposed for the first time to prepare chromatographic packings (2HAp-ZM) for protein separation. By mimicking the mineralization procedures in vivo, this type of matrix with hydroxyapatite (HAp) coating and zirconia-magnesia (ZM) composite core was fabricated. Systematic characterizations, including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and specific surface area analysis, were carried out to investigate the properties of the material. Results showed that the surface of 2HAp-ZM was composed of bead-like, amorphous or nanocrystalline HAp. The specific surface area, total pore volume, and average pore diameter of the resultant material were 25 m2/g, 0.09 cm3/g, and 14 nm, respectively. Furthermore, 2HAp-ZM exhibited good mechanical stability through repeated testing and its application as stationary phases for protein separation was then studied. Five model proteins (bovine serum albumin, trypsin, lysozyme, ribonuclease A, and cytochrome c) were successfully separated on 2HAp-ZM. Finally, the mass recovery of protein and the dynamic loading capacity were studied; the results were calculated to be no less than 93% and 80 μg/mL of blank column volume, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号