首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A new procedure for determination of biogenic amines (BA): histamine, phenethylamine, tyramine and tryptamine, based on the derivatization reaction with 2-chloro-1,3-dinitro-5-(trifluoromethyl)-benzene (CNBF), is proposed. The amines derivatives with CNBF were isolated and characterized by X-ray crystallography and 1H, 13C, 19F NMR spectroscopy in solution. The novelty of the procedure is based on the pure and well-characterized products of the amines derivatization reaction. The method was applied for the simultaneous analysis of the above mentioned biogenic amines in wine samples by the reversed phase-high performance liquid chromatography. The procedure revealed correlation coefficients (R2) between 0.9997 and 0.9999, and linear range: 0.10–9.00 mg L−1 (histamine); 0.10–9.36 mg L-1 (tyramine); 0.09–8.64 mg L−1 (tryptamine) and 0.10–8.64 mg L−1 (phenethylamine), whereas accuracy was 97%–102% (recovery test). Detection limit of biogenic amines in wine samples was 0.02–0.03 mg L−1, whereas quantification limit ranged 0.05–0.10 mg L−1. The variation coefficients for the analyzed amines ranged between 0.49% and 3.92%. Obtained BA derivatives enhanced separation the analytes on chromatograms due to the inhibition of hydrolysis reaction and the reduction of by-products formation.  相似文献   

2.
A facile, sensitive and universal method was established for analysis of biogenic amines using micellar electrokinetic chromatography coupled with chemiluminescent (CL) detection. It was found that diperiodatocuprate (III) (K5[Cu(HIO6)2], DPC), a transition metal chelate at unstable high oxidation state, could effectively enhance the reaction between luminol-type compound and hydrogen peroxide, to produce very strong CL signal. In addition, triethylamine was found to be able to effectively improve the yield of the derivatization reaction between biogenic amines and a luminol-type derivatization reagent, N-(4-aminobutyl)-N-ethylisoluminol (ABEI). Based on these facts, three biogenic amines were pre-column derivatized with ABEI, and post-column detected using high sensitive luminol-hydrogen peroxide-DPC CL system. Since the background was quite low, and the signal was quite strong, a considerable improved sensitivity was obtained. The presented method had been successfully applied to simultaneously analyze glycine, proline and phenylalanine with the detection limits (S/N = 3) of 0.030 μmol L−1, 0.23 μmol L−1 and 0.21 μmol L−1, respectively. To evaluate its potential application value, glycine in saliva and urine samples was detected using this method, and satisfied results were obtained. This approach can be further extended to detection of many other compounds such as peptides and drugs by using luminol-type derivatization reagent.  相似文献   

3.
Simultaneous electrokinetic and hydrodynamic injection (SEHI) of organic cations (tricyclic antidepressant and beta blocker drugs) with on-line sample concentration using micelle to solvent stacking (MSS) was studied in micellar electrokinetic chromatography. Compared to conventional injection, >300-fold improvements in signals were obtained by hydrodynamic injection. However, with SEHI the amount of sample ions introduced into the capillary was increased which afforded a higher gain of up to 4000-fold without compromise to separation efficiency. The electrokinetic injection at negative polarity (anode at the detector end) introduced the micelle bound analytes. The hydrodynamic injection also maintained the MSS boundary inside the capillary. The stability of the MSS boundary affected SEHI where mild conditions that were low voltage as well as pressure injection were desired. The limits of detection were in the range from 0.6–4.2 ng mL−1. A strategy for optimization was described and the method was applied to the ng mL−1 analysis of spiked wastewater after simple dilution and centrifugation.  相似文献   

4.
Ultrasound-assisted dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography-fluorescence detection was used for the extraction and determination of three biogenic amines including octopamine, tyramine and phenethylamine in rice wine samples. Fluorescence probe 2,6-dimethyl-4-quinolinecarboxylic acid N-hydroxysuccinimide ester was applied for derivatization of biogenic amines. Acetonitrile and 1-octanol were used as disperser solvent and extraction solvent, respectively. Extraction conditions including the type of extraction solvent, the volume of extraction solvent, ultrasonication time and centrifuging time were optimized. After extraction and centrifuging, analyte was injected rapidly into high-performance liquid chromatography and then detected with fluorescence. The calibration graph of the proposed method was linear in the range of 5–500 μg mL−1 (octopamine and tyramine) and 0.025–2.5 μg mL−1 (phenethylamine). The relative standard deviations were 2.4–3.2% (n = 6) and the limits of detection were in the range of 0.02–5 ng mL−1. The method was applied to analyze the rice wine samples and spiked recoveries in the range of 95.42–104.56% were obtained. The results showed that ultrasound-assisted dispersive liquid–liquid microextraction was a very simple, rapid, sensitive and efficient analytical method for the determination of trace amount of biogenic amines.  相似文献   

5.
A micellar electrokinetic capillary chromatography (MEKC) method with laser-induced fluorescence detection (LIF) was developed for analyzing three phosphoamino acids including phosphotyrosine (P-Tyr), phosphoserine (P-Ser), and phosphothreonine (P-Thr). 3-(2-Furoyl)quinoline-2-carboxaldehyde (FQ), a fluorogenic dye, was employed for derivatization of these phosphoamino acids. Results indicated that the complete baseline resolution of each phosphoamino acid was obtained within 10 min, using 20 mmol l−1 sodium borate buffer (pH 9.35) containing 20 mmol l−1sodium deoxycholate (SDC) and 10 mmol l−1 Brij35. Other common amino acids, especially Glu and Asp, did not disturb the assay of these phosphoamino acids. There was a linear relationship between the peak area for analyte and its concentration, with correlation coefficients in the range of 0.9966-0.9996. The concentration detection limits (signal-to-noise = 3) for P-Tyr, P-Ser, and P-Thr were 10, 40, and 75 nmol l−1, respectively. The developed method was successfully applied for determining phosphoamino acids in the hydrolysis sample of a phosphorylated protein kinase.  相似文献   

6.
An alternative methodology for simultaneous analysis of ethambutol, isoniazid, rifampicin and pyrazinamide in pharmaceutical formulations by capillary zone electrophoresis under UV direct detection with an analysis time of 8.0 min is proposed. Background running was based on the effective mobility curve of the analytes and an optimum separation condition was achieved using a 33 Box-Behnken design, with Brij 35, Cu2+ and acetic acid/sodium acetate buffer as factors. An electrolyte consisting of 50.0 mmol L−1 of acetic acid/sodium acetate buffer, 12.5 mmol L−1 of CuSO4, and standard and sample solutions prepared in 2.00 mmol L−1 of Brij 35 and 12.5 mmol L−1 of CuSO4 were optimized. After evaluating validation parameters, the method was successfully applied to the analysis of samples in the form of tablets and sachets.  相似文献   

7.
Li J  Cai Z 《Talanta》2008,77(1):331-339
We demonstrated that anionic porphyrins could be stacked and separated in micellar electrokinetic chromatography (MEKC) and microemulsion electrokinetic chromatography (MEEKC) by applying acetonitrile and high salt content in human urine sample matrix. The introduction of sample containing acetonitrile and sodium chloride into the CE capillary at more than 10% of the total capillary volume resulted in the improvement of peak resolution and the enhancement of detection sensitivity. The achieved acetonitrile stacking enrichment factors of six porphyrins ranged from 12 to 32 in MEKC and from 28 to 33 in MEEKC, respectively. The stacking technique was successfully applied for analyzing porphyrins present in urine samples that were deproteinized with acetonitrile. For the analysis of coproporphyrin isomers, addition of the sodium cholate (SC) into micelle and microemulsion solutions provided adequate resolution. Calibration curves obtained for the determination of coproporphyrin isomers were found linear between 30 and 400 nmol L−1, and the limit of detection (LOD) was 20 nmol L−1 in MEEKC. Intra- and interday precisions (n = 11) in the microemulsion separation system for the isomers at spiked concentrations of 40-400 nmol L−1 in urine were in the range of 0.1-0.4% and 0.7-7.6% for migration time and peak area, respectively. Coproporphyrin III, coproporphyrin I and uroporphyrin were detected at levels of 80.7 nmol L−1, 32.3 nmol L−1 and 19.8 nmol L−1, respectively, in the urine samples collected from healthy individuals. Different porphyrin profiles, however, were observed in urine samples from porphyria cutanea tarda (PCT) patients.  相似文献   

8.
CE methods have been developed for the analysis of organic and peroxide-based explosives. These methods have been developed for deployment on portable, in-field instrumentation for rapid screening. Both classes of compounds are neutral and were separated using micellar electrokinetic chromatography (MEKC). The effects of sample composition, separation temperature, and background electrolyte composition were investigated. The optimised separation conditions (25 mM sodium tetraborate, 75 mM sodium dodecyl sulfate at 25 °C, detection at 200 nm) were applied to the separation of 25 organic explosives in 17 min, with very high efficiency (typically greater than 300,000 plates m−1) and high sensitivity (LOD typically less than 0.5 mg L−1; around 1–1.5 μM). A MEKC method was also developed for peroxide-based explosives (10 mM sodium tetraborate, 100 mM sodium dodecyl sulfate at 25 °C, detection at 200 nm). UV detection provided LODs between 5.5 and 45.0 mg L−1 (or 31.2–304 μM), which is comparable to results achieved using liquid chromatography. Importantly, no sample pre-treatment or post-column reaction was necessary and the peroxide-based explosives were not decomposed to hydrogen peroxide. Both MEKC methods have been applied to pre-blast analysis and for the detection of post-blast residues recovered from controlled, small scale detonations of organic and peroxide-based explosive devices.  相似文献   

9.
A novel and highly selective method has been developed for the determination of aromatic primary amines by their conversion to dithiocarbamates by reaction with carbon disulphide, and then to isothiocyanates, which are volatile, by heating in the presence of a heavy metal ion. Zinc(II) was selected owing to its low toxicity and optimum yield of isothiocyanates. The latter were sampled by headspace-solid phase microextraction (HS-SPME) on divinylbenzene-carboxen-polydimethylsiloxane fibre, 50/30 μm. The HS-SPME procedure was optimized to provide adequate limits of detection in the analysis of aromatic amines in their real samples by gas chromatography with mass spectrometry (GC–MS) or flame ionization detection (GC–FID). The method gave rectilinear calibration graph, correlation coefficient and limit of detection, respectively, over the range 0.08–100 μg L−1, 0.9950–0.9990 and 25–240 ng L−1 in gas chromatography–mass spectrometry, and 0.01–10 mg L−1, 0.9910–0.9991 and 0.8–3.0 μg L−1 in gas chromatography–flame ionization detection. At two different levels, 10 and 40 μg L−1, the range of intra-day RSD was 3.7–8.5% (GC–MS) and 3.3–9.2% (GC–FID), respectively. The proposed method is simple and rapid, and has been applied to determine aromatic primary amines in the environmental waters, food samples of ice cream powder and soft drinks concentrate, and food colours. The intra-day RSD in the analysis of real samples by GC–MS was in the range 3.6–6.2%. The food/colour samples were found to contain elevated levels of aniline and 2-toluidine.  相似文献   

10.
Hollow fibre liquid-phase microextraction with in situ derivatization using dansyl chloride has been successfully developed for the high-performance liquid chromatography-ultraviolet (HPLC-UV) determination of the biogenic amines (tryptamine, putrescine, cadaverine, histamine, tyramine, spermidine) in food samples. Parameters affecting the performance of the in situ derivatization process such as type of extraction solvent, temperature, extraction time, stirring speed and salt addition were studied and optimized. Under the optimized conditions (extraction solvent, dihexyl ether; acceptor phase, 0.1 M HCl; extraction time, 30 min; extraction temperature, 26 °C; without addition of salt), enrichment factors varying from 47 to 456 were achieved. Good linearity of the analytes was obtained over a concentration range of 0.1–5 μg mL−1 (with correlation coefficients of 0.9901–0.9974). The limits of detection and quantification based on a signal-to-noise ratio of 3–10, ranged from 0.0075 to 0.030 μg mL−1 and 0.03 to 0.10 μg mL−1, respectively. The relative standard deviations based on the peak areas for six replicate analysis of water spiked with 0.5 μg mL−1 of each biogenic amine were lower than 7.5%. The method was successfully applied to shrimp sauce and tomato ketchup samples, offering an interesting alternative to liquid–liquid extraction and solid phase extraction for the analysis of biogenic amines in food samples.  相似文献   

11.
A method for determination of metabisulfite and hydrosulfite in poultice and decolorant by isotachophoresis was developed. Metabisulfite and hydrosulfite are ionizable oxoanions of sulfur of similar character that can easily be oxidized to sulfates. To protect the analytes from oxidation the solid samples were dissolved in a 1% (w/v) solution of formaldehyde. Hydrosulfite and metabisulfite present in the samples were transformed by the reaction with formaldehyde to stable compounds, hydroxymethanesulfinate and hydroxymethanesulfonate that were determined isotachophoretically without any pretreatment except for sample filtering and degassing. A capillary of 0.4 mm i.d. and 100 mm effective length made of fluorinated ethylene-propylene copolymer was filled with an electrolyte system consisting of 10 mmol L−1 HCl + 11 mmol L−1 imidazole, 0.15% (w/v) hydroxyethylcellulose, pH 6.0 (leading electrolyte) and 5 mmol L−1 benzoic acid + 6 mmol L−1 imidazole, pH 6.5 (terminating electrolyte). Separation was performed at a driving current of 80 μA and for detection current was decreased to 30 μA. Using contactless conductivity detection, the calibration curves in the tested concentration range up to 2.5 mmol L−1 were linear for both metabisulfite and hydrosulfite complexes. The concentration detection limits for metabisulfite and hydrosulfite were 2.9 and 3.4 μmol L−1, respectively. For 1 mmol L−1 concentration, values of R.S.D. (n = 6) were 2.6% for hydrosulfite and 0.8% for metabisulfite. Isotachophoretic determination took about 20 min. The elaborated isotachophoretic procedure is simple to perform, sufficiently sensitive and accurate. In addition to this, low cost of analyses makes the method an alternative procedure to methods used so far for the determination of oxoanions of sulfur.  相似文献   

12.
Ghada M. Hadad  Samy Emara 《Talanta》2009,79(5):1360-151
A stability-indicating reversed-phase high-performance liquid chromatography (RP-HPLC) method has been developed which can separate and accurately quantitate paracetamol, dantrolene, cetirizine and pseudoephedrine. The method was successfully validated for the purpose of conducting stability studies of the four analytes in quality control (QC) laboratories. The stability-indicating capability of the method was demonstrated by adequate separation of these four analytes from all the degradant peaks. A gradient mobile phase system consisting of (A) 50 mmol L−1 sodium dihydrogen phosphate, 5 mmol L−1 heptane sulfonic acid sodium salt, pH 4.2 and (B) acetonitrile was used with Discovery reversed-phase HS C18 analytical column (250 mm × 4.6 mm i.d., 5 μm particle size). Quantitation was achieved with UV detection at 214 nm, based on peak area.The proposed method was validated and successfully applied for the analysis of pharmaceutical formulations and laboratory-prepared mixtures containing the two multicomponent combinations.  相似文献   

13.
A highly sensitive microchip electrophoresis (MCE) method with chemiluminescence (CL) detection was developed for the determination of biogenic amines including agmatine (Agm), epinephrine (E), dopamine (DA), tyramine, and histamine in human urine samples. To achieve a high assay sensitivity, the targeted analytes were pre-column labeled by a CL tagging reagent, N-(4-aminobutyl)-N-ethylisoluminol (ABEI). ABEI-tagged biogenic amines after MCE separation reacted with hydrogen peroxide in the presence of horseradish peroxidase (HRP), producing CL emission. Since no CL reagent was added to the running buffer, the background of the CL detection was extremely low, resulting in a significant improvement in detection sensitivity. Detection limits (S/N = 3) were in the range from 5.9 × 10−8 to 7.7 × 10−8 M for the biogenic amines tested, which were at least 10 times lower than those of the MCE–CL methods previously reported. Separation of a urine sample on a 7 cm glass/poly(dimethylsiloxane) (PDMS) microchip channel was completed within 3 min. Analysis of human urine samples found that the levels of Agm, E and DA were in the ranges of 2.61 × 10−7 to 4.30 × 10−7 M, 0.81 × 10−7 to 1.12 × 10−7 M, and 8.76 × 10−7 to 11.21 × 10−7 M (n = 4), respectively.  相似文献   

14.
The paper described a new ionic liquid, 1,3-dibutylimidazolium hexafluorophosphate, as extraction solvent for extraction and preconcentration of organophosphorus pesticides (fenitrothion, parathion, fenthion and phoxim) from water and fruit samples by dispersive liquid–liquid microextraction combined with high-performance liquid chromatography. The effects of experimental parameters, such as extraction solvent volume, disperser solvent and its volume, extraction and centrifugal time, sample pH, extraction temperature and salt addition, on the extraction efficiency were investigated. An extraction recovery of over 75% and enrichment factor of over 300-fold were obtained under the optimum conditions. The linearity relationship was also observed in the range of 5–1000 μg L−1 with the correlation coefficients (r2) ranging from 0.9988 to 0.9999. Limits of detection were 0.01–0.05 μg L−1 for four analytes. The relative standard deviations at spiking three different concentration levels of 20, 100 and 500 μg L−1 varied from 1.3–2.7, 1.4–1.9 and 1.1–1.7% (n = 7), respectively. Three real samples including tap water, Yellow River water and pear spiked at three concentration levels were analyzed and yielded recoveries ranging from 92.7–109.1, 95.0–108.2 and 91.2–108.1%, respectively.  相似文献   

15.
This work proposes a spectrophotometric method for the determination of hydrogen peroxide during photodegradation reactions. The method is based on the reaction of H2O2 with amonium metavanadate in acidic medium, which results in the formation of a red-orange color peroxovanadium cation, with maximum absorbance at 450 nm. The method was optimized using the multivariate analysis providing the minimum concentration of vanadate (6.2 mmol L−1) for the maximum absorbance signal. Under these conditions, the detection limit is 143 μmol L−1. The reaction product showed to be very stable for samples of peroxide concentrations up to 3 mmol L−1 at room temperature during 180 h. For higher concentrations however, samples must be kept refrigerated (4 °C) or diluted. The method showed no interference of Cl (0.2-1.3 mmol L−1), NO3 (0.3-1.0 mmol L−1), Fe3+ (0.2-1.2 mmol L−1) and 2,4-dichlorophenol (DCP) (0.2-1.0 mmol L−1). When compared to iodometric titration, the vanadate method showed a good agreament. The method was applied for the evaluation of peroxide consumption during photo-Fenton degradation of 2,4-dichlorophenol using blacklight irradiation.  相似文献   

16.
The use of micellar electrokinetic capillary chromatography (MECC) with electrochemical detection is described for the determination of puerarin and daidzein in Puerariae radix and its medicinal preparations. Operated in a wall-jet configuration, a 300 μm diameter carbon-disk electrode was used as the working electrode, which exhibits good responses at +900 mV (versus SCE) for the two analytes. Under the optimum conditions, the analytes were base-line separated within 11 min in a sodium dodecyl sulphate—borax (pH 7.8) running buffer, and excellent linearity was obtained in the concentration range from 5.0×10−4 to 5.0×10−6 mol/l. The detection limit (S/N=3) was 6×10−7 and 1.1×10−6 mol/l for puerarin and daidzein, respectively. This work provides a useful method for the analysis of traditional Chinese medicines.  相似文献   

17.
Coacervative microextraction ultrasound-assisted back-extraction technique (CME-UABE) is proposed for the first time for extracting and preconcentrating organophosphates pesticides (OPPs) from honey samples prior to gas chromatography–mass spectrometry (GC–MS) analysis. The extraction/preconcentration technique is supported on the micellar organized medium based on non-ionic surfactant. To enable coupling the proposed technique with GC, it was required to back extract the analytes into hexane. Several variables including, surfactant type and concentration, equilibration temperature and time, matrix modifiers, pH and buffers nature were studied and optimized over the relative response of the analytes. The best working conditions were as follows: an aliquot of 10 mL 50 g L−1 honey blend solution was conditioned by adding 100 μL 0.1 mol L−1 hydrochloric acid (pH 2) and finally extracted with 100 μL Triton X-114 100 g L−1 at 85 °C for 5 min using CME technique. Under optimal experimental conditions, the enrichment factor (EF) was 167 and limits of detection (LODs), calculated as three times the signal-to-noise ratio (S/N = 3), ranged between 0.03 and 0.47 ng g−1. The method precision was evaluated over five replicates at 1 ng g−1 with RSDs ≤9.5%. The calibration graphs were linear within the concentration range of 0.3–1000 ng g−1 for chlorpirifos; and 1–1000 ng g−1 for fenitrothion, parathion and methidathion, respectively. The coefficients of correlation were ≥0.9992. Validation of the methodology was performed by standard addition method at two concentration levels (2 and 20 ng g−1). The recoveries were ≥90%, indicating satisfactory robustness of the methodology, which could be successfully applied for determination of OPPs in honey samples of different Argentinean regions. Two of the analyzed samples showed levels of methidathion ranged between 1.2 and 2.3 ng g−1.  相似文献   

18.
A simple and fast reaction between 12-molybdophosphate heteropoly anion and the polymethine dye Astra Phloxine was used for the development of a new SIA method for the determination of orthophosphate. The suggested method has higher sensitivity and a broader calibration range than existing SIA methods. It can be used to detect phosphate in the range from 0.2 to 10 μmol L−1 with a detection limit of 0.1 μmol L−1 and an acceptable throughput of 20 samples h−1. The comparably low molybdate (5.6 mmol L−1) and dye (0.1 mmol L−1) concentrations led to an improvement in the stability of the base line. Inter-day reproducibility was better than 5%, while the intra-day RSD was in the range 0.8-3.5%. The method was used for the analysis of natural water samples and phosphorus-containing chemicals having a low content of orthophosphate.  相似文献   

19.
A simple, precise, and accurate hydrophilic interaction liquid chromatographic (HILIC) method has been developed for the determination of five aromatic amines in environmental water samples. Chromatography was carried out on a bare silica column, using a mixture of acetonitrile and a buffer of NaH2PO4–H3PO4 (pH 1.5, containing 10 mM NaH2PO4) (85:15, v/v) as a mobile phase at a flow rate of 1 mL min−1. Aromatic amines were detected by UV absorbance at 254 nm. The linear range of amines was good (r2 > 0.998) and limit of detection (LOD) within 0.02–0.2 mg L−1 (S/N = 3). The retention mechanism for the analytes under the optimum conditions was determined to be a combination of adsorption, partition and ionic interactions. The proposed method was applied to the environmental water samples. Aromatic amines were isolated from aqueous samples using solid-phase extraction (SPE) with Oasis HLB cartridges. Recoveries of greater than 75% with precision (RSD) less than 12% were obtained at amine concentrations of 5–50 μg L−1 from 100 mL river water and influents from a wastewater treatment plant (WWTP). The present HILIC technique proved to be a viable method for the analysis of aromatic amines in the environmental water samples.  相似文献   

20.
Tang Y  Wu M 《Talanta》2005,65(3):794-798
A method of quickly determining ascorbic acid and sorbic acid by capillary zone electrophoresis with ultraviolet detection was developed. The choice of background electrolyte, wavelength, injection time and applied voltage were discussed. Ascorbic acid and sorbic acid were well separated in 80 mmol L−1 boric acid-5 mmol L−1borax (pH = 8.0) in 5 min at the detecting wavelength of 270 nm. Under the optimum condition, the method has linear ranges of 2.54-352.00 mg L−1 for ascorbic acid and 1.08-336.39 mg L−1 for sorbic acid with the detection limit of 1.70 mg L−1 for ascorbic acid and 0.54 mg L−1 for sorbic acid, respectively. Other organic acids in fruit juices have no effect on the detection. This method is very feasible and simple and can be used to detect ascorbic acid and sorbic acid in fruit juices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号