首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以4-氯酚(4-CP)、2,4-二氯酚(2,4-DCP)和2,4,6-三氯酚(2,4,6-TCP)为模型化合物,建立了中空纤维膜支载-可忽略损耗液相微萃取法(HF-nd-LPME)和高效液相色谱(HPLC)联用,同时测定辛醇-水分配系数(Kow)和电离常数(pKa)的方法。在60 mL正辛醇饱和的样品溶液(1mmol/L NaH2PO4,2μg/mL4-CP、2,4-DCP和2,4,6-TCP)中放入2个支载有0.16μL正辛醇的中空纤维膜萃取装置,静置96 h确保达到萃取平衡。然后将萃取装置取出并用甲醇解吸,经HPLC测定得到萃取到正辛醇中的目标物浓度coctanol。coctanol与样品中目标物原始浓度cwater的比值即为Kow。通过测定模型化合物在不同pH3.0~13条件下的Kow值,并依据化合物的Kow、pKa与pH的关系模型进行非线性拟合,即可计算得出模型化合物pKa值。实验表明,本方法测定的三种模型化合物的Kow和pKa值与文献报道值一致。  相似文献   

2.
In this paper, extraction kinetics was investigated experimentally and theoretically in hollow fiber liquid-phase microextraction (HF-LPME) and electromembrane extraction (EME) with the basic drugs droperidol, haloperidol, nortriptyline, clomipramine, and clemastine as model analytes. In HF-LPME, the analytes were extracted by passive diffusion from an alkaline sample, through a (organic) supported liquid membrane (SLM) and into an acidic acceptor solution. In EME, the analytes were extracted by electrokinetic migration from an acidic sample, through the SLM, and into an acidic acceptor solution by application of an electrical potential across the SLM. In both HF-LPME and EME, the sample (donor solution) was found to be rapidly depleted for analyte. In HF-LPME, the mass transfer across the SLM was slow, and this was found to be the rate limiting step of HF-LPME. This finding is in contrast to earlier discussions in the literature suggesting that mass transfer across the boundary layer at the donor–SLM interface is the rate limiting step of HF-LPME. In EME, mass transfer across the SLM was much more rapid due to electrokinetic migration. Nevertheless, mass transfer across the SLM was rate limiting even in EME. Theoretical models were developed to describe the kinetics in HF-LPME, in agreement with the experimental findings. In HF-LPME, the extraction efficiency was found to be maintained even if pH in the donor solution was lowered from 10 to 7–8, which was below the pKa-value for several of the analytes. Similarly, in EME, the extraction efficiency was found to be maintained even if pH in the donor solution increased from 4 to 11, which was above the pKa-value for several of the analytes. The two latter experiments suggested that both techniques may be used to effectively extract analytes from samples in a broader pH range as compared to the pH range recommended in the literature.  相似文献   

3.
The presence of pharmaceuticals in the environment is a very important problem that requires analytical solutions. The wide variety of matrices and, usually, the low pharmaceuticals levels in the environmental samples requires high sensitive and selective analytical procedures. Wastewaters are one of the more important sources of environmental pollutants but they are very complex matrices that need clean-up procedures prior the analysis. Hollow fiber-based liquid-phase microextraction (HF-LPME) is a relatively new technique used in analytical chemistry for sample pre-treatment that offers high selectivity and sensitivity compared to most traditional extraction techniques. The low organic solvent consumption derived from the use of HF-LPME is according to the current trends to a “Green Chemistry”, and Analytical Chemistry should follow these environmental good practices. This paper describes an extraction method using a polypropylene membrane supporting dihexyl ether (three-phase hollow fiber-based liquid-phase microextraction (HF-LPME)) for the direct analysis of three pharmaceuticals (salicylic acid (SAC), ibuprofen (IBU) and diclofenac (DIC)) in raw and treated wastewaters followed by a HPLC/MS-MS determination using a highly packed Pursuit® XRs Ultra 2.8 μm C18 column that allows high resolution using low flow-rates and, simultaneously, short retention times. Detection limits were 20, 100 and 300 ng L−1 for salicylic acid, diclofenac and ibuprofen, respectively.  相似文献   

4.
采用中空纤维液相微萃取与高效液相色谱联用技术测定了尿液样品中的痕量己烯雌酚;考察了样品相酸度、中间相种类、接收相浓度、搅拌速度、萃取时间等对液-液-液三相微萃取效率的影响,进而确定了最佳萃取条件.结果表明,当样品相pH为2.5,中间相为甲苯,接收相为3μL 0.25mol/L氢氧化钠溶液,搅拌速度为800r/min,萃取时间为50min时,萃取效率最佳.在最佳萃取条件下,样品的回收率为76.4%,相对标准偏差为3.8%.  相似文献   

5.
In the present study, a three phase-based hollow fiber protected liquid-phase microextraction (HF-LPME) method combined with high-performance liquid chromatography (HPLC) for the determination of salicylates in environmental waters was developed. The HF-LPME procedure was optimized by an L16(45) orthogonal array experimental design (OAD) with five factors at four levels. Under the optimal extraction condition (pHs of donor and receiving phases of 3.0 and 6.2, respectively, extraction time of 45 min, stirring speed of 1000 rpm, and salt addition of 20% (w/v)), salicylates could be determined in a linear range from 0.025 to 1.0 μg mL−1 with a good correlation (r2 > 0.9930). The limits of detection (LODs) ranged between 0.6 ng mL−1 and 1.2 ng mL−1 for the target analytes. The relative standard deviations (RSDs) of intra-day and inter-day were in the range of 0.64–14.58% and 0.16–15.45%, respectively. This procedure afforded a convenient, sensitive, accurate and cost-saving operation with high extraction efficiency for the model analytes. The method was applied satisfactorily to the determination of salicylates in two environmental waters.  相似文献   

6.
Hollow fiber membrane solvent microextraction (HFMSME) has been applied as a simple and efficient means of sample preparation for the screening of drugs of abuse in saliva. Extraction of cocaine and its metabolites from a 2 ml saliva solution was achieved in 10 min. This was followed by fast GC separation allowing complete analysis to be achieved in 15 min. Using HFMSME, detection limits ranged between 6 and 28 ng ml−1 with average relative standard deviations of 9.0%. The effect of the presence of various foodstuffs was also investigated.  相似文献   

7.
朱颖  陈璇  郑飞浪  白小红 《色谱》2009,27(6):769-775
在优化的三相中空纤维液相微萃取(3p-HFLPME)条件下,研究了6种羟基苯甲酸类化合物(HBAs)的3p-HFLPME行为;揭示了HBAs的富集因子(EF)与其正庚醇/水条件分配系数(log Pn-heptanol/5 mmol/L HCl)、pKa和羟基数目(N)的相关性,初步阐明了聚偏氟乙烯中空纤维对HBAs的电荷转移传递机理以及有机溶剂对HBAs的选择性萃取机理。优化的3p-HFLPME条件: 以MOF 503聚偏氟乙烯中空纤维为有机溶剂支持体,正庚醇为有机相,5 mmol/L HCl体系为给体,80 mmol/L NH3·H2O为接受相,搅拌速度为1200 r/min,萃取35 min。该方法的精密度(以相对标准偏差计)小于3%,检出限为0.09~30.00 μg/L,加标回收率为93.3%~107.1%,HBAs质量浓度为5 mg/L时的富集因子最高达107.6倍。  相似文献   

8.
A simple and efficient method based on hollow fiber protected headspace liquid-phase in conjunction with high performance liquid chromatography has been introduced for extraction and determination of three residual monomers (2-ethylhexyl acrylate (EHA), vinyl acetate (VA), glycidyl methacrylate (GM)) in polymer latex. Using this methodology, the analytes of interest extracted from a sample are led into organic solvent located inside the porous hollow fiber membrane. Initially, several experimental parameters were controlled and optimized and the optimum conditions were reached with 8 cm neatly cut hollow fibers containing heptanol, which were exposed to the headspace of a 12 mL sample solution containing 20% (w/v) NaCl thermostated at 110 °C and stirred at 800 rpm for 20 min. Finally, 20 μL of the extraction solution was withdrawn into a syringe and injected into HPLC for analysis. The calibration curves were linear (r2 ≥ 0.994) over the concentration range of 0.05-10 mg L−1 for VA and 0.02-10 mg L−1 for other analytes. The relative standard deviation (RSD%) for three-replicate extractions and measurements was below 8.6%. The limits of detection of this method for quantitative determination of the analytes were found within the range of 0.005 to 0.011 mg kg−1 with the enrichment factors within the 5-164 range. The method was successfully applied for determination of residual monomers in polymer latex.  相似文献   

9.
In hollow fiber membrane liquid-phase microextraction (LPME), target analytes are extracted from aqueous samples and into a supported liquid membrane (SLM) sustained in the pores in the wall of a small porous hollow fiber, and further into an acceptor phase present inside the lumen of the hollow fiber. The acceptor phase can be organic, providing a two-phase extraction system compatible with capillary gas chromatography, or the acceptor phase can be aqueous resulting in a three-phase system compatible with high-performance liquid chromatography or capillary electrophoresis. Due to high enrichment, efficient sample clean-up, and the low consumption of organic solvent, substantial interest has been devoted to LPME in recent years. This paper reviews important applications of LPME with special focus on bioanalytical and environmental chemistry, and also covers a new possible direction for LPME namely electromembrane extraction, where analytes are extracted through the SLM and into the acceptor phase by the application of electrical potentials.  相似文献   

10.
A new method for the enrichment of Strychnos alkaloids in biological samples via liquid-phase microextraction (LPME) based on porous polypropylene hollow fibers in combination with on-line sweeping in micellar electrokinetic chromatography was developed. The calibration curve was linear over the range of 20-200 ng mL-1 for both strychnine and brucine in human urine sample. The detection limits (S/N=3:1) for strychnine and brucine were 1 ng mL-1 and 2 ng mL-1, respectively. The LPME-sweeping method has been successfully applied to the analysis of strychnine and brucine in real urine samples.  相似文献   

11.
An alternative method for gas chromatographic determination of haloacetic acids (HAAs) in water using direct derivatization followed by hollow fiber membrane liquid-phase microextraction (HF-LPME) has been developed. The method has improved the sample preparation step according to the conventional US EPA Method 552.2 by combining the derivatization and the extraction into one step prior to determination by gas chromatography electron captured detector (GC-ECD). The HAAs were derivatized with acidic methanol into their methyl esters and simultaneously extracted with supported liquid hollow fiber membrane in headspace mode. The derivatization was attempted directly in water sample without sample evaporation. The HF-LPME was performed using 1-octanol as the extracting solvent at 55 °C for 60 min with 20% Na2SO4. The linear calibration curves were observed for the concentrations ranging from 1 to 300 μg L−1 with the correlation coefficients (R2) being greater than 0.99. The method detection limits of most analytes were below 1 μg L−1 except DCAA and MCAA that were 2 and 18 μg L−1, respectively. The recoveries from spiked concentration ranged from 97 to 109% with %R.S.D. less than 12%. The method was applied for determination of HAAs in drinking water and tap water samples. The method offers an easy one step high sample throughput sample preparation for gas chromatographic determination of haloacetic acids as well as other contaminants in water.  相似文献   

12.
A three-phase hollow fiber liquid-phase microextraction (HF-LPME) coupled either with capillary electrophoresis (CE) or high performance liquid chromatography (HPLC) with UV detection methods was successfully developed for the determination of trace levels of the anti-diabetic drug, rosiglitazone (ROSI) in biological fluids. The analyte was extracted into dihexyl ether that was immobilized in the wall pores of a porous hollow fiber from 10 mL of aqueous sample, pH 9.5 (donor phase), and was back extracted into the acceptor phase that contained 0.1 M HCl located in the lumen of the hollow fiber. Parameters affecting the extraction process such as type of extraction solvent, HCl concentration, donor phase pH, extraction time, stirring speed, and salt addition were studied and optimized. Under the optimized conditions (extraction solvent, dihexyl ether; donor phase pH, 9.5; acceptor phase, 0.1 M HCl; stirring speed, 600 rpm; extraction time, 30 min; without addition of salt), enrichment factor of 280 was obtained. Good linearity and correlation coefficients of the analyte was obtained over the concentration ranges of 1.0–500 and 5.0–500 ng mL−1 for the HPLC (r2 = 0.9988) and CE (r2 = 0.9967) methods, respectively. The limits of detection (LOD) and limits of quantitation (LOQ) for the HPLC and CE methods were (0.18, 2.83) and (0.56, 5.00) ng mL−1, respectively. The percent relative standard deviation (n = 6) for the extraction and determination of three concentration levels (10, 250, 500 ng mL−1) of ROSI using the HPLC and CE methods were less than 10.9% and 13.2%, respectively. The developed methods are simple, rapid, sensitive and are suitable for the determination of trace amounts of ROSI in biological fluids.  相似文献   

13.
In the present work, a novel sample pre-treatment technique for the determination of trace concentrations of some insecticide compounds in aqueous samples has been developed and applied to the determination of the selected analytes in environmental water samples. The extraction procedure is based on coupling polypropylene hollow fiber liquid phase microextraction (HF-LPME) with gas chromatography by flame thermionic detection (GC-FTD). For the development of the method, seven organophosphorous insecticides (dichlorvos, mevinphos-cis, ethoprophos, chlorpyrifos methyl, phenthoate, methidathion and carbofenothion) and one carbamate (carbofuran) were considered as target analytes. Several factors that influence the efficiency of HF-LPME were investigated and optimized including agitation, organic solvent, sample volume, exposure time, salt additives and pH. The optimized methodology exhibited good linearity with correlation coefficient = 0.990. The analytical precision for the target analytes ranged from 4.3 to 11.1 for within-day variation and 4.6 to 12.0% for between-day variation. The detection limits for all analytes were found in the range from 0.001 to 0.072 microg/L, well below the limits established by the EC Drinking Water Directive (EEC 80/778). Relative recoveries obtained by the proposed method from drinking and river water samples ranged from 80 to 104% with coefficient of variations ranging from 4.5 to 10.7%. The present methodology is easy, rapid, sensitive and requires small sample volumes to screen environmental water samples for insecticide residues.  相似文献   

14.
In this study, hollow fiber based liquid-phase microextraction (HF-LPME), coupled with GC, GC–MS and GC–IRMS detections, was employed to determine petroleum hydrocarbons in spilled oils. According to the results, the HF-LPME method collected more low-molecular weight components, such as C7–C11n-alkanes, naphthalene, and phenanthrene, than those collected in conventional liquid–liquid extraction (LLE). The results also showed that this method had no remarkable effect on the distributions of high-molecular weight compounds such as >C18n-alkanes, C1–C3 phenanthrene, and hopanes. Also, the carbon isotopic compositions of individual n-alkanes in the two preparation processes were identical. Accordingly, HF-LPME, as a simple, fast, and inexpensive sample preparation technique, could become a promising method for the identification of oil spill sources.  相似文献   

15.
A three-phase liquid microextraction procedure for the determination of mercury at low concentrations is discussed. To the aqueous sample placed at pH 7 by means of a phosphate buffer, 0.002% (m/v) 1-(2-pyridylazo)-2-naphthol (PAN) is incorporated, and the mixture submitted to microextraction with a hollow-fiber impregnated with toluene and whose lumen contains a 0.05 mol L−1 ammonium iodide solution. The final measurement of the extract is carried out by electrothermal atomic absorption spectrometry (300 °C and 1100 °C for the calcination and atomization temperatures, respectively). The pyrolytic graphite atomizer is coated electrolytically with palladium. An enrichment factor of 270, which results in a 0.06 μg L−1 mercury for the detection limit is obtained. The relative standard deviation at the 1 μg L−1 mercury level is 3.2% (n = 5). The reliability of the procedure is verified by analyzing waters as well as six certified reference materials.  相似文献   

16.
Hollow fiber-based liquid-phase microextraction (HF-LPME) is a relatively new technique employed in analytical chemistry for sample pretreatment which offers more selectivity and sensitivity than any traditional extraction technique. This paper describes a three-phase HF-LPME method for ibuprofen using a polypropylene membrane supporting dihexyl ether followed by a chemiluminescence (CL) determination using the CL enhancement on the acidic permanganate-sulfite system in a FIA configuration which is the first time that both techniques have been combined for analytical purposes. The CL intensity (peak area) was proportional to the log of ibuprofen concentration in the donor phase over the range 0.1-20 μg mL−1. The detection limit was 0.03 μg mL−1 of ibuprofen in the donor phase. The method was satisfactory reproducible and has been applied to the ibuprofen determination in pharmaceuticals and in real human urine samples.  相似文献   

17.
陈璇  白小红  王晓  王婧  卜玮 《色谱》2010,28(12):1144-1149
利用中空纤维液相微萃取方法(HF-LPME)分析麻黄碱和伪麻黄碱在不同基质中的优势构象,阐明了麻黄碱和伪麻黄碱的萃取机理;结合高效液相色谱(HPLC)建立了微量麻黄碱和伪麻黄碱的分离测定方法。以聚偏氟乙烯中空纤维为有机溶剂载体,正己醇为萃取溶剂,麻黄碱和伪麻黄碱的NaOH(5 mol/L)溶液为样品相,0.01 mol/L H2SO4溶液为接收相,在1200 r/min转速下萃取35 min,收集萃取液直接进行HPLC分析。麻黄碱和伪麻黄碱在水溶液中的线性范围为5~100 μg/L,检出限分别为1.9 μg/L和1.2 μg/L,富集倍数分别为38和61倍,平均回收率分别为100.6%±1.2%和103.2%±3.5%;在鼠尿液中的线性范围为100~5×104 μg/L,检出限分别为30 μg/L和42 μg/L,富集倍数分别为20和17倍,平均回收率分别为108.4%±4.4%和106.1%±5.4%。研究表明该方法操作简单,选择性高,适用于微量麻黄碱的含量测定和分析。  相似文献   

18.
A novel extraction procedure coupled with gas chromatography-mass spectrometric detection for quantification of organochlorine pesticides (OCPs) in water is described. Amphiphilic polyhydroxylated polyparaphenylene (PH-PPP) was synthesized and coated on the surfaces of a porous polypropylene hollow fiber membrane (HFM). Due to the high porosity of the HFM, maximum active surface area to achieve high extraction efficiency is expected. The polymer-coated HFM was used for the extraction of 15 OCPs from water. The extraction efficiency was compared with emerging and established methods such as liquid-phase microextraction (LPME), solid-phase microextraction (SPME) and stir bar sorptive extraction (SBSE) techniques. We term the current procedure as polymer-coated hollow fiber microextraction (PC-HFME). PC-HFME showed good selectivity and sensitivity. Detection limits for OCPs were in the range of 0.001-0.008 microg l(-1). The sensitivity and selectivity of the coated HFM could be adjusted by changing the characteristics of the coated PH-PPP film.  相似文献   

19.
A new polyvinylidene difluoride (PVDF) hollow fiber (200 μm wall thickness, 1.2 mm internal diameter, 0.2 μm pore size) was compared with two other polypropylene (PP) hollow fibers (200, 300 μm wall thickness, 1.2 mm internal diameter, 0.2 μm pore size) in the automated hollow fiber liquid-phase microextraction (HF-LPME) of flunitrazepam (FLNZ) in biological samples. With higher porosity and better solvent compatibility, the PVDF hollow fiber showed advantages with faster extraction efficiency and operational accuracy. Parameters of the CTC autosampler program for HF-LPME in plasma and urine samples were carefully investigated to ensure accuracy and reproducibility. Several parameters influencing the efficiency of HF-LPME of FLNZ in plasma and urine samples were optimized, including type of porous hollow fiber, organic solvent, agitation rate, extraction time, salt concentration, organic modifier, and pH. Under optimal conditions, extraction recoveries of FLNZ in plasma and urine samples were 6.5% and 83.5%, respectively, corresponding to the enrichment factor of 13 in plasma matrix and 167 in urine matrix. Excellent sample clean-up was observed and good linearities (r2 = 0.9979 for plasma sample and 0.9995 for urine sample) were obtained in the range of 0.1–1000 ng/mL (plasma sample) and 0.01–1000 ng/mL (urine sample). The limits of detection (S/N = 3) were 0.025 ng/mL in plasma matrix and 0.001 ng/mL in urine matrix by gas chromatography/mass spectrometry/mass spectrometry.  相似文献   

20.
A simple and efficient hollow fiber liquid‐phase microextraction (HF‐LPME) technique in conjunction with high‐performance liquid chromatography is presented for extraction and quantitative determination of aristolochic acid I in human urine samples. Several parameters influencing the efficiency of HF‐LPME were investigated and optimized, including extraction solvent, stirring rate, extraction time, pH of donor phase and acceptor phase. Excellent sample clean‐up was observed and good linearity with coefficient of 0.9999 was obtained in the range of 15.4–960 µg/L. This method provided a 230‐fold enrichment factor and good repeatability with relative standard deviations (RSD) lower than 6.0%. The limit of detection value for the analyte in urine sample was 0.01 µg/L at a signal‐to‐noise ratio of 3. The extraction recovery from urine samples was 61.8% with an RSD of 9.71%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号