共查询到20条相似文献,搜索用时 15 毫秒
1.
A new stationary phase demonstrated effective separation towards polar analytes or their counterions within a single run. 相似文献
2.
The separation of the phenacyl esters of the fatty acids originating from a fish oil extract by means of a comprehensive analysis using silver-ion (SI) supercritical fluid chromatography (SFC) and reversed phase liquid chromatography (RP-LC) in the first and second dimensions, respectively, is described. The combination ensured a high orthogonality and peak capacity, particularly when compared to the comprehensive RP-LC × 2RP-LC separation achieved by using a configuration with two columns in parallel in the second dimension. The construction of the SI-SFC × RP-LC interface consists of two two-position/ten-port switching valves, of which one is equipped with two loops packed with octadecyl silica (ODS) particles. Compared to the SFC × RP-LC configuration described in an earlier publication, the peak capacity in the second dimension was increased. Water was not only added as make-up fluid to the SFC effluent to ensure analyte focusing, but also as rinsing medium of the loops prior to the transfer of the fractions to the second dimension. In the SFC dimension, high efficiency and loadability were obtained by coupling two wide-bore columns (4.6 mm ID) in series. Evaporative light scattering (ELSD) and ultraviolet (UV) detection with standard and high-pressure flow cells were evaluated in terms of data acquisition speed and suppression of signal interferences originating from the supercritical carbon dioxide (CO2) expansion. 相似文献
3.
Comparison of reversed‐phase liquid chromatography and hydrophilic interaction chromatography for the fingerprint analysis of Radix isatidis 下载免费PDF全文
Cong‐En Zhang Yin Xiong Qin Dong Dan Gao Le‐Le Zhang Li‐Na Ma Cheng Peng Xiao‐Ping Dong Dan Yan 《Journal of separation science》2014,37(9-10):1141-1147
Radix isatidis is a famous anti‐influenza virus herbal medicine traditionally taken as a water decoction. However, the chemical fingerprint analysis of Radix isatidis is dominantly based on RPLC, from which it is difficult to obtain fingerprint information of hydrophilic compounds. Here, we developed the separation of Radix isatidis by RPLC and hydrophilic interaction chromatography, comparing the traditional RPLC fingerprint with the hydrophilic interaction chromatography fingerprint. Besides, an anti‐viral assay of Radix isatidis was conducted to evaluate its efficacy. The fingerprint–efficacy relationships between the fingerprints and the anti‐viral activity were further investigated with principal component regression analysis. The results showed that the anti‐viral activity correlated better with the hydrophilic interaction chromatography fingerprint than with the RPLC fingerprint. This study indicates that hydrophilic interaction chromatography could not only be a complementary method to increase the fingerprint coverage of conventional RPLC fingerprint, but also can better represent the efficacy and quality of Radix isatidis. 相似文献
4.
Stella S. Brudin Robert A. Shellie Paul R. Haddad Peter J. Schoenmakers 《Journal of chromatography. A》2010,1217(43):6742-6746
In the work presented here a novel approach to comprehensive two-dimensional liquid chromatography is evaluated. Ion chromatography is chosen for the first-dimension separation and reversed-phase liquid chromatography is chosen for the second-dimension separation mode. The coupling of these modes is made possible by neutralising the first-dimension effluent, containing KOH, prior to transfer to the second-dimension reversed-phase column. A test mixture of 24 low-molar-mass organic acids is used for optimisation of the system. Three food and beverage samples were analysed in order to evaluate the developed methodology, the resulting two-dimensional separation is near-orthogonal, the set-up is simple and all instrumental components are available commercially. The method proved to be robust and suitable for the analysis of wine, orange juice and yogurt. 相似文献
5.
Poly(l‐lactic acid)‐modified silica stationary phase for reversed‐phase and hydrophilic interaction liquid chromatography 下载免费PDF全文
Kaname Ohyama Shizuka Takasago Naoya Kishikawa Naotaka Kuroda 《Journal of separation science》2015,38(5):720-723
Poly(l ‐lactic acid) is a linear aliphatic thermoplastic polyester that can be produced from renewable resources. A poly(l ‐lactic acid)‐modified silica stationary phase was newly prepared by amide bond reaction between amino groups on aminopropyl silica and carboxylic acid groups at the end of the poly(l ‐lactic acid) chain. The poly(l ‐lactic acid)‐silica column was characterized in reversed‐phase liquid chromatography and hydrophilic interaction liquid chromatography with the use of different mobile phase compositions. The poly(l ‐lactic acid)‐silica column was found to work in both modes, and the retention of test compounds depending on acetonitrile content exhibited “U‐shaped” curves, which was an indicator of reversed‐phase liquid chromatography/hydrophilic interaction liquid chromatography mixed‐mode retention behavior. In addition, carbonyl groups included into the poly(l ‐lactic acid) backbone work as an electron‐accepting group toward a polycyclic aromatic hydrocarbon and provide π–π interactions. 相似文献
6.
Imidazolium‐embedded iodoacetamide‐functionalized silica‐based stationary phase for hydrophilic interaction/reversed‐phase mixed‐mode chromatography 下载免费PDF全文
Huizhen Wang Lu Zhang Teng Ma Liyuan Zhang Xiaoqiang Qiao 《Journal of separation science》2016,39(18):3498-3504
A novel imidazolium‐embedded iodoacetamide‐functionalized silica‐based stationary phase has been prepared by surface radical chain‐transfer polymerization. The stationary phase was characterized by Fourier transform infrared spectrometry, thermogravimetric analysis, and element analysis. Fast and efficient separations of polar analytes, such as nucleosides and nucleic acid bases, water‐soluble vitamins and saponins, were well achieved in hydrophilic interaction chromatography mode. Additionally, a mixed mode of hydrophilic interaction and reversed‐phase could be also obtained in the analysis of polar and nonpolar compounds, including weak acidic phenols, basic anilines and positional isomers, with high resolution and molecular‐planarity selectivity, outperforming the commercially available amino column. Moreover, simultaneous separation of polar and nonpolar compounds was also achieved. In conclusion, the multimodal retention capabilities of the imidazolium‐embedded iodoacetamide‐functionalized silica‐based column could offer a wide range of retention behavior and flexible selectivity toward hydrophilic and hydrophobic compounds. 相似文献
7.
A novel strategy is described for designing optimal second dimension (2D) gradient conditions for a comprehensive two-dimensional liquid chromatography system where the two dimensions are not fully orthogonal. Using the approach developed here, the initial and final organic modifier content values resulting in the highest coverage of separation space can be derived for each 2D gradient run. Theory indicates that these values can be determined by adapting 2D gradient operation to the degree of orthogonality. The new method is tested on a comprehensive two-dimensional liquid chromatography system that uses reversed phase (RP) columns showing different selectivities in the two dimensions. A comparison between analyses carried out using normal and optimized 2D gradients showed that the latter allow a more efficient use of analysis time. This can result either in an improved peak capacity or in decreasing total analysis time, depending on the final goal of the experiment. In the latter scenario, the number of separated peaks is comparable to that obtained using gradients spanning a wide range of organic modifier but, now, in half the time. As test samples complex mixtures of peptides were analyzed. 相似文献
8.
Fingerprint analysis of Ligusticum chuanxiong using hydrophilic interaction chromatography and reversed-phase liquid chromatography 总被引:1,自引:0,他引:1
Jin Y Liang T Fu Q Xiao YS Feng JT Ke YX Liang XM 《Journal of chromatography. A》2009,1216(11):2136-2141
Fingerprint analysis is considered one of the most powerful approaches to quality control in traditional Chinese medicines (TCMs). In this study, a binary chromatographic fingerprint analysis was developed using hydrophilic interaction chromatography (HILIC) and reversed-phase liquid chromatography (RPLC) to gain more chemical information about polar compounds and weakly polar compounds. This method was used to construct a chromatographic fingerprint of Ligusticum chuanxiong. The two chromatographic methods demonstrated good precision, reproducibility, and stability, with relative standard deviations of <2% for retention time and 7% for peak area for both HILIC and RPLC separations. Data from the analysis of 14 samples by HILIC and RPLC were processed with similarity analysis, with correlation coefficients and congruence coefficients. This binary fingerprint analysis, using two chromatographic modes, is a powerful tool for characterizing the quality of samples, and can be used for the comprehensive quality control of TCMs. 相似文献
9.
建立了亲水/反相二维色谱用于制备桔梗中三萜皂苷单体的方法。桔梗经水煮醇沉、反相和亲水两种模式的固相萃取后得到三萜皂苷类组分。选定XAmide色谱柱(150 mm×20 mm,5 μm),以乙腈和水为流动相,在亲水色谱模式下进行组分制备。选择时间触发模式,以1 min为单位进行馏分收集,得到6~25 min之间的20个三萜皂苷精细组分。以第18个馏分(JG23)为例,在反相色谱模式下采用Atlantis Prep T3色谱柱(100 mm×30 mm,5 μm)制备,得到两个单体化合物。通过质谱和核磁共振对其进行定性,确定分别为deapi-platycoside E和platycoside E。实验结果表明,该制备方法具有好的正交选择性,对于复杂样品中三萜皂苷类化合物的分离纯化有一定的借鉴意义。 相似文献
10.
Summary For the evaluation of reversed phase packing materials a mixture of acetylacetone, I-nitronaphthalene and naphthalene is proposed. This will reveal the usual optimum kinetic chromatographic parameters (the naphthalene peak), the degree of activity or endcapping status of the column (the ratio of the I-nitronaphthalene and naphthalene retention times) and trace metal activity (the shape and intensity of the acetylacetone peak). 相似文献
11.
低共熔溶剂被用作亲水作用色谱流动相的新型改性剂。选用硅胶柱(150 mm×4.6 mm, 3 μm),以乙腈与低共熔溶剂(氯化胆碱-乙二醇(摩尔比为1:3))的混合溶液为流动相,考察了6个碱基与核苷的色谱分离效果,并讨论了低共熔溶剂在流动相中的比例及温度条件对分离的影响。结果表明,与传统的水相流动相条件相比,在加入低共熔溶剂改性后的流动相条件下,碱基与核苷分离效果得到明显的改善,尤其是胞嘧啶与胞苷能达到完全分离;同时,随着低共熔溶剂在乙腈中浓度的增加,6个碱基与核苷在色谱柱上的保留均有不同程度的减小,其中胞苷的保留减小最为显著;随着柱温的升高,碱基与核苷的保留同样有所减小。本文验证了低共熔溶剂作为亲水作用色谱流动相改性剂的可行性,可在一定程度上解决传统亲水作用色谱分离的困难。 相似文献
12.
Miriam Schwalbe-Herrmann Jan Willmann Dieter Leibfritz 《Journal of chromatography. A》2010,1217(32):5179-5183
A new isocratic separation method was developed for separation of phospholipid (PL) classes based on a silica hydrophilic interaction liquid chromatography (HILIC) column with electrospray ionization (ESI) mass spectrometric detection. Although HILIC is typically used for polar compounds, also amphiphilic molecules like phospholipids can be separated very well. Compared to normal-phase (NP) chromatography, which is usually used for PL class separation, HILIC has the advantage to use on-line ESI-MS detection because its eluents are ESI compatible. Furthermore, this HILIC method is isocratic and hence less time consuming than most (gradient) NP HPLC methods. A chromatographic baseline separation of a standard mixture containing phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidylcholine (PC), sphingomyelin (SM) and lysophosphatidylcholine (LPC) was achieved within a total run time of 17 min using a mobile phase consisting of acetonitrile, methanol and ammonium acetate 10 mM. The new method was subsequently tested on phospholipid fractions of a body fluid (human blood plasma) and a tissue extract (swine brain) whereby it achieved nearly the same baseline separation of the PL classes. The detected classes in both cases were PE, PC, SM and LPC. 相似文献
13.
Separation of monosaccharides by hydrophilic interaction chromatography with evaporative light scattering detection 总被引:1,自引:0,他引:1
Hydrophilic interaction liquid chromatography (HILIC) was used to separate monosaccharides that are common in N-linked oligosaccharides in glycoproteins and other compounds. A TSKgel Amide-80 column was eluted with 82% acetonitrile, in 5 mM ammonium formate (pH 5.5). Column temperature was 60 degrees C and evaporative light scattering was used for detection (ELSD). With this method, L-fucose, D-galactose, D-mannose, N-acetyl-D-glucosamine, N-acetylneuraminic acid, and D-glucuronic acid were separated, with detection limits of 0.3-0.5 microg for each monosaccharide, and intermediate precisions were 3-6% RSD (n=6). 相似文献
14.
In the present study, an easy and efficient method based on the serial coupling of analytical reversed‐phase and zwitterionic hydrophilic interaction liquid chromatography was developed for the simultaneous separation of polar and nonpolar phenols occurring in wine. The zwitterionic hydrophilic column was connected in series to the reversed‐phase one via a T‐piece, with which the ACN content in eluent of the second dimension was increased, in order to cope the solvent strength incompatibility between the two columns. The final mobile phase at low‐flow rate (≤0.5 mL/min), high‐ACN content (90%), and low‐salt concentration was directed to an ESI‐TOF‐MS , for high accurate mass detections. The developed method was applied for the identification of target phenols in several wines. Retention time and peak width intra‐ and interday repeatability studies proved the reliability of the method for the simultaneous analysis of all the polar and nonpolar analytes in wine. The serial reversed‐phase/zwitterionic hydrophilic interaction liquid chromatography coupling offered the possibility to enlarge the number of identified compounds and it represents a valid approach for nontarget analysis of complex samples by a single injection. 相似文献
15.
Comprehensive analysis of pharmaceutical products using simultaneous mixed‐mode (ion‐exchange/reversed‐phase) and hydrophilic interaction liquid chromatography 下载免费PDF全文
Artaches A. Kazarian Pavel N. Nesterenko Phimpha Soisungnoen Rodjana Burakham Supalax Srijaranai Brett Paull 《Journal of separation science》2014,37(16):2138-2144
Liquid chromatographic assays were developed using a mixed‐mode column coupled in sequence with a hydrophilic interaction liquid chromatography column to allow the simultaneous comprehensive analysis of inorganic/organic anions and cations, active pharmaceutical ingredients, and excipients (carbohydrates). The approach utilized dual sample injection and valve‐mediated column switching and was based upon a single high‐performance liquid chromatography gradient pump. The separation consisted of three distinct sequential separation mechanisms, namely, (i) ion‐exchange, (ii) mixed‐mode interactions under an applied dual gradient (reversed‐phase/ion‐exchange), and (iii) hydrophilic interaction chromatography. Upon first injection, the Scherzo SS C18 column (Imtakt) provided resolution of inorganic anions and cations under isocratic conditions, followed by a dual organic/salt gradient to elute active pharmaceutical ingredients and their respective organic counterions and potential degradants. At the top of the mixed‐mode gradient (high acetonitrile content), the mobile phase flow was switched to a preconditioned hydrophilic interaction liquid chromatography column, and the standard/sample was reinjected for the separation of hydrophilic carbohydrates, some of which are commonly known excipients in drug formulations. The approach afforded reproducible separation and resolution of up to 23 chemically diverse solutes in a single run. The method was applied to investigate the composition of commercial cough syrups (Robitussin®), allowing resolution and determination of inorganic ions, active pharmaceutical ingredients, excipients, and numerous well‐resolved unknown peaks. 相似文献
16.
17.
Gika H Theodoridis G Mattivi F Vrhovsek U Pappa-Louisi A 《Journal of separation science》2012,35(3):376-383
The analysis of amino acids presents significant challenges to contemporary analytical separations. The present paper investigates the possibility of retention prediction in hydrophilic interaction chromatography (HILIC) gradient elution based on the analytical solution of the fundamental equation of the multilinear gradient elution derived for reversed‐phase systems. A simple linear dependence of the logarithm of the solute retention (ln k) upon the volume fraction of organic modifier (φ) in a binary aqueous‐organic mobile is adopted. Utility of the developed methodology was tested on the separation of a mixture of 21 amino acids carried out with 14 different gradient elution programs (from simple linear to multilinear and curved shaped) using ternary eluents in which a mixture of methanol and water (1:1, v/v) was the strong eluting member and acetonitrile was the weak solvent. Starting from at least two gradient runs, the prediction of solute retention obtained under all the rest gradients was excellent, even when curved gradient profiles were used. Development of such methodologies can be of great interest for a wide range of applications. 相似文献
18.
The most separations in HILIC mode are performed on silica-based supports. Nevertheless, recently published results have indicated that the metal oxides stationary phases also possess the ability to interact with hydrophilic compounds under HILIC conditions. This paper primarily describes the retention behaviour of model hydrophilic analytes (4-aminobenzene sulfonic acid, 4-aminobenzoic acid, 4-hydroxybenzoic acid, 3,4-diaminobenzoic acid, 3-aminophenol and 3-nitrophenol) on the polybutadine modified zirconia in HILIC. The results were simultaneously compared with a bare zirconia and a silica-based HILIC phase. The mobile phase strength, pH and the column temperature were systematically modified to assess their impact on the retention of model compounds. It was found that the retention of our model hydrophilic analytes on both zirconia phases was mainly governed by adsorption while on the silica-based HILIC phase partitioning was primarily involved. The ability of ligand-exchange interactions of zirconia surface with a carboxylic moiety influenced substantially the response of carboxylic acids on the elevated temperature as well as to the change of the mobile phase pH in contrast to the silica phase. However, no or negligible ligand-exchange interactions were observed for sulfanilic acid. The results of this study clearly demonstrated the ability of modified zirconia phase to retain polar acidic compounds under HILIC conditions, which might substantially enlarge the application area of the zirconia-based stationary phases. 相似文献
19.
应用亲水作用色谱检测鸡蛋和肉中三聚氰胺及三聚氰酸二酰胺 总被引:1,自引:0,他引:1
应用亲水作用色谱(HILIC)对从市场上购买的鸡蛋和肉中的三聚氰胺及三聚氰胺降解产物三聚氰酸二酰胺进行了检测。采用的色谱柱为ZIC-HILIC柱,流动相为3 mmol/L磷酸二氢铵溶液(pH 6.9)-乙腈(20:80, v/v),流速为0.8 mL/min,检测波长为220 nm。在该体系下,三聚氰胺和三聚氰酸二酰胺的保留时间适中,与样品中的内源性物质有良好的分离。样品经0.1%磷酸提取,偏磷酸及乙腈沉淀蛋白质和糖类物质,以及P-SCX固相萃取柱净化。三聚氰胺和三聚氰酸二酰胺在0.4~40 mg/L范围内与峰面积呈良好的线性关系,样品定量限(按信噪比(S/N)不小于10计)为2 mg/kg,在2~10 mg/kg添加水平下的平均回收率为80%~105%,相对标准偏差小于10%。该方法具有良好的分离选择性,可用于鸡蛋和肉中三聚氰胺和三聚氰酸二酰胺的同时检测。 相似文献
20.
In this work, a revisit to the retention mechanism of HILIC was attempted to point out critical factors that contribute to the chromatographic regime as well as to bring out subtle details of the relative contribution of partitioning and surface adsorption. In this vein, the retention behaviour of a set of water-soluble vitamins (WSVs) and toluene on three silica based columns was evaluated under varying chromatographic conditions. The data obtained were associated with the hydration degree of the stationary phases and the ability of the organic solvents to disrupt the formation of the water-enriched layer. Moreover, the elution behaviour of toluene at different buffer salt concentrations in the mobile phase, confirmed the preferential partition of salt ions into the stagnant layer, as ACN content was increased. The results from the fitting of partitioning and surface adsorption models indicated differences in the contribution of the two retention mechanisms to both neutral and charged compounds. The occurrence of surface adsorption and the retentivity differences for neutral WSVs depend on the hydration degree and the hydrogen bonding properties of the solutes and the column surface, respectively. For charged solutes experiencing electrostatic repulsion, the contribution of the adsorption mechanism at highly organic mobile phases, emanates from both the weak effect of buffer salt ions on the electrostatic interaction and the strong effect of hydrophilic interactions. On the other hand, the chromatographic retention of electrostatically attracted solutes indicates that the surface adsorption dominates, even at mobile phases rich in water. 相似文献