首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Three methods are presented for the simultaneous determination of lamivudine and zidovudine. The first method depends on first derivative UV spectrophotometry, with zero-crossing and peak-to-base measurement. The first derivative amplitudes at 265.6 and 271.6 nm were selected for the assay of lamivudine and zidovudine, respectively. The second method depends on first derivative of the ratio-spectra by measurements of the amplitudes at 239.5 and 245.3 nm for lamivudine and 225.1 and 251.5 nm for zidovudine. Calibration graphs were established for 1-50 μg/ml for lamivudine and 2-100 μg/ml for zidovudine. In the third method (HPLC), a reversed-phase column with a mobile phase of methanol:water:acetonitrile (70:20:10 (v/v/v)) at 0.9 ml/min flow rate was used to separate both compounds with a detection of 265.0 nm. Linearity was obtained in the concentration range of 0.025-50 μg/ml for lamivudine and 0.15-50 μg/ml for zidovudine. All of the proposed methods have been extensively validated. These methods allow a number of cost and time saving benefits. The described methods can be readily utilized for analysis of pharmaceutical formulations. There was no significant difference between the performance of all of the proposed methods regarding the mean values and standard deviations. The described HPLC method showed to be appropriate for simultaneous determination of lamivudine and zidovudine in human serum samples.  相似文献   

2.
Thirteen different antiretrovirals are commonly used in hospital protocols for suppressing the activity of the human immunodeficiency virus (HIV) and associated opportunistic diseases in patients with acquired immunodeficiency syndrome (AIDS). In this work, three micellar mobile phases are recommended for screening these substances, using UV detection, and the process can be performed in less than 18 min. The first mobile phase (sodium dodecyl sulphate or SDS 50 mM) is used for the group consisting of acyclovir, didanosine, ganciclovir, stavudine and zidovudine. The second mobile phase (SDS 120 mM/4.5% propanol) is used for the group containing abacavir, lamivudine, nevirapine, valaciclovir and zalcitabine, whereas the third mobile phase (SDS 150 mM/5% pentanol) is used for efavirenz, indinavir and ritonavir. The use of micellar liquid chromatography (MLC) as an analytical tool allows serum samples to be injected directly. The method was validated over the range of 0–10 μg mL−1. The limits of detection (signal-to-noise ratio of 3), which ranged from 6 to 30 ng mL−1, were adequate for monitoring these substances. Intra- and inter-day relative standard deviations of the assay were below 3% for all compounds. The recoveries in spiked serum samples were in the 89.5–104.4% range. The method can be applied to the screening, monitoring and control of patients’ treatment with antiretrovirals and antivirals.  相似文献   

3.
The potential of a recently developed lamp-based fluorescence detector for the analysis of underivatised proteins by capillary electrophoresis (CE) was investigated. Fluorescence detection (Flu) was achieved using optical light guides to deliver excitation light from a Xenon–Mercury lamp to the capillary detection window and to collect fluorescence emission and lead it to a photomultiplier. The performance of the detector was evaluated by monitoring the native fluorescence of the amino acid tryptophan and the proteins α-chymotrypsinogen A, carbonic anhydrase II, lysozyme and trypsinogen upon excitation at 280 nm. The test compounds were analysed using background electrolytes (BGEs) of sodium phosphate at pH 3.0 and 11.3. The results were compared to experiments of CE with UV absorbance detection. For tryptophan, a linear fluorescence response was obtained with a dynamic range of over 4 orders of magnitude, and a limit of detection (LOD) of 6.7 nM. This LOD was a factor of 200 more favourable than UV detection at 280 nm, and a factor of 20 better than detection at low-UV wavelengths. All tested proteins showed linear fluorescence responses up to 250 μg/mL. LODs were typically in the 10–20 nM range. These LODs were a factor of 25 lower than for UV detection at 280 nm, and comparable to UV detection at low-UV wavelengths. Overall, Flu yields much more stable baselines, especially with a BGE of high pH. The applicability of CE–Flu is demonstrated by the analysis of a degraded protein mixture, and of an expired formulation of the protein drug human growth hormone, indicating that protein degradation products can be selectively detected.  相似文献   

4.
We synthesized a new coumarin-based probe TP, containing a disulfide moiety, to detect biothiols in cells. A fluorescence turn-on response is induced by the thiol–disulfide exchange of the probe, with subsequent intramolecular benzothiazolidine ring formation giving rise to a fluorescent product. The probe exhibits an excellent selectivity for cysteine (Cys) and homocysteine (Hcy) over glutathione (GSH) and other amino acids. The fluorescent probe also exhibits a highly sensitive fluorescence turn-on response to Cys and Hcy with detection limits of 0.8 μM for Cys and 0.5 μM for Hcy. In addition, confocal fluorescence microscopy imaging using RAW264.7 macrophages demonstrates that the probe TP could be an efficient fluorescent detector for thiols in living cells.  相似文献   

5.
This study describes the ability of nanoscale liquid chromatography (nano-LC) coupled with UV or mass spectrometry (MS) for the simultaneous determination of eight common penicillin antibiotics (amoxicillin, ampicillin, penicillin G, penicillin V, oxacillin, cloxacillin, nafcillin and dicloxacillin) in commercial samples (pharmaceuticals, milk, porcine tissues (liver and kidney)) for the first time. Material types of the on-column polymeric frits (polystyrene-based and polymethacrylate-based monoliths) and the packed stationary phase materials (C8 and C18 particles of 3 μm) used in the nano-LC for the influence of penicillin separation were evaluated. The nano-LC and MS parameters such as the composition and flow rate of mobile phase, capillary voltage and temperature of dry gas were examined in order to acquire high separation resolution and detection sensitivity for penicillin analyses. Furthermore, a home-made in-line filter (a nylon membrane of 0.2 μm pore size), was first used to connect with the flow cell of high sensitivity UV detector or the nanoelectrospray needle in MS detection. The result indicated it could effectively improve the reproducibility of penicillin mass signals or prolong the lifetime of the flow cell. The nano-LC methods provided good quantitative precisions in the range of 89.5–111.2% for UV detection at 0.5 μg/mL penicillins, and 83. 1–94.9% for MS detection at 5 μg/L penicillins), respectively, as well as offered stable retention repeatabilities (the relative standard deviation (RSD) of retention time was lower 0.30% in both the UV and MS detections). Compared to other LC–MS methods, the proposed nano-LC systems provided better detection sensitivity for these penicillins (the limits of detection (LOD) was of 2.27–4.06 μg/L for UV mode, and 0.01–0.51 μg/L for MS mode) when either UV or MS detector was employed.  相似文献   

6.
Liu C  Mo YY  Chen ZG  Li X  Li OL  Zhou X 《Analytica chimica acta》2008,621(2):171-177
A new dual detection system for microchip is reported. Both fluorescence detector (FD) and contactless conductivity detector (CCD) were combined together and integrated on a microfluidic chip. They shared a common detection position and responded simultaneously. A blue light-emitting diode was used as excitation source and a small planar photodiode was used to collect the emitted fluorescence in fluorescence detection, which made the device more compact and portable. The coupling of the fluorescence and contactless conductivity modes at the same position of a single separation channel enhanced the detection characterization of sample and offered simultaneous detection information of both fluorescent and charged specimen. The detection conditions of the system were optimized. K+, Na+, fluorescein sodium, fluorescein isothiocyanate (FITC) and FITC-labeled amino acids were used to evaluate the performance of the dual detection system. The limits of detection (LOD) of FD for fluorescein Na+, FITC, FITC-labeled arginine (Arg), glycine (Gly) and phenylalanine (Phe) were 0.02 μmol L−1, 0.05 μmol L−1, 0.16 μmol L−1, 0.15 μmol L−1, 0.12 μmol L−1 respectively, and the limits of detection (LOD) of CCD achieved 0.58 μmol L−1 and 0.39 μmol L−1 for K+ and Na+ respectively.  相似文献   

7.
A simple end-column electrochemical detector was designed and attached to an available commercial capillary electrophoresis instrument with UV detection to detect different kind of herbicides and to determinate methyl-4-aminophenyl-sulfonylcarbamate (asulam) in water samples. The designed cell is very easy to assemble and disassemble in a short period of time; the working electrode positioning is also quickly achieved without micropositioners. The alignment between working electrode and capillary outlet was very reproducible for the all checked electrodes; the R.S.D. obtained was lower than 6.0% for 100 μm gap distance. In this mode, the non-electroactive and electroactive compounds could be detected by UV and electrochemical detection, respectively at the same time. The electrochemical determination of asulam using micellar electrokinetic capillary chromatography (MEKC) is the first time that is reported. In both detection systems, a linear range was obtained for asulam concentrations lower than 25.0 mg l−1, in boric acid 0.020 mol l−1 at pH 8.20 and containing 0.025 mol l−1 of sodium dodecyl sulfate, to obtain selectivity additional separation by the micellar distribution process. Under these conditions, an experimental detection limit of 0.4 mg l−1 was achieved. A new experimental scheme is also described for asulam determination in tap waters with a previous preconcentration step. Using both, UV and electrochemical detection, with a previous extraction procedure, the detection limits of asulam in tap water samples were of 1.0 and 0.8 μg l−1, respectively.  相似文献   

8.
Khan A  Khan MI  Iqbal Z  Shah Y  Ahmad L  Nazir S  Watson DG  Khan JA  Nasir F  Khan A  Ismail 《Talanta》2011,84(3):789-801
A new, simple, economical and validated high-performance liquid chromatography linked with electrochemical detector (HPLC-ECD) method has been developed and optimized for different experimental parameters to analyze the most common monothiols and disulfide (cystine, cysteine, homocysteine, methionine, reduced (GSH) and oxidized glutathione (GSSG)) and ascorbic acid present in human plasma and erythrocytes using dopamine as internal standard (IS). Complete separation of all the targets analytes and IS at 35 °C on Discovery HS C18 RP column (250 mm × 4.6 mm, 5 μm) was achieved using 0.05% TFA:methanol (97:3, v/v) as a mobile phase pumped at the rate of 0.6 ml min−1 using electrochemical detector in DC mode at the detector potential of 900 mV. The limits of detection (3 S/N) and limits of quantification (10 S/N) of the studied compounds were evaluated using dilution method. The proposed method was validated according to standard guidelines and optimization of various experimental parameters and chromatographic conditions was carried out. The optimized and validated HPLC-ECD method was successfully applied for the determination of the abovementioned compounds in human plasma and erythrocytes. The method will be quite suitable for the determination of plasma and erythrocyte profile of ascorbic acid and aminothiols in oxidative stress and other basic research studies.  相似文献   

9.
A novel glucose biosensor, based on the modification of well-aligned polypyrrole nanowires array (PPyNWA) with Pt nanoparticles (PtNPs) and subsequent surface adsorption of glucose oxidase (GOx), is described. The distinct differences in the electrochemical properties of PPyNWA–GOx, PPyNWA–PtNPs, and PPyNWA–PtNPs–GOx electrodes were revealed by cyclic voltammetry. In particular, the results obtained for PPyNWA–PtNPs–GOx biosensor showed evidence of direct electron transfer due mainly to modification with PtNPs. Optimum fabrication of the PPyNWA–PtNPs–GOx biosensor for both potentiometric and amperometric detection of glucose were achieved with 0.2 M pyrrole, applied current density of 0.1 mA cm−2, polymerization time of 600 s, cyclic deposition of PtNPs from −200 mV to 200 mV, scan rate of 50 mV s−1, and 20 cycles. A sensitivity of 40.5 mV/decade and a linear range of 10 μM to 1000 μM (R2 = 0.9936) were achieved for potentiometric detection, while for amperometric detection a sensitivity of 34.7 μA cm−2 mM−1 at an applied potential of 700 mV and a linear range of 0.1–9 mM (R2 = 0.9977) were achieved. In terms of achievable detection limit, potentiometric detection achieved 5.6 μM of glucose, while amperometric detection achieved 27.7 μM.  相似文献   

10.
A novel electrode was developed through electrodepositing gold nanoparticles (GNPs) on overoxidized-polyimidazole (PImox) film modified glassy carbon electrode (GCE). The combination of GNPs and the PImox film endowed the GNPs/PImox/GCE with good biological compatibility, high selectivity and sensitivity and excellent electrochemical catalytic activities towards ascorbic acid (AA), dopamine (DA), uric acid (UA) and tryptophan (Trp). In the fourfold co-existence system, the peak separations between AA–DA, DA–UA and UA–Trp were large up to 186, 165 and 285 mV, respectively. The calibration curves for AA, DA and UA were obtained in the range of 210.0–1010.0 μM, 5.0–268.0 μM and 6.0–486.0 μM with detection limits (S/N = 3) of 2.0 μM, 0.08 μM and 0.5 μM, respectively. Two linear calibrations for Trp were obtained over ranges of 3.0–34.0 μM and 84.0–464.0 μM with detection limit (S/N = 3) of 0.7 μM. In addition, the modified electrode was applied to detect AA, DA, UA and Trp in samples using standard addition method with satisfactory results.  相似文献   

11.
p-Nitrophenyl organophosphates (OPs) including paraoxon, parathion and methyl parathion, etc, are highly poisonous OPs, for which sensitive and rapid detection method is most needed. In this work, an ultrasensitive electrochemical sensor for the determination of p-nitrophenyl OPs was developed based on ordered mesoporous carbons (OMCs) modified glassy carbon electrode (GCE) (OMCs/GCE). The electrochemical behavior and reaction mechanism of p-nitrophenyl OPs at OMCs/GCE was elaborated by taking paraoxon as an example. Experimental conditions such as buffer pH, preconcentration potential and time were optimized. By using differential pulse voltammetry, the current response of the sensor at −0.085 V was linear with concentration within 0.01–1.00 μM and 1.00–20 μM paraoxon. Similar linear ranges of 0.015–0.5 μM and 0.5–10 μM were found for parathion, and 0.01–0.5 μM and 0.5–10 μM for methyl parathion. The low limits of detection were evaluated to be 1.9 nM for paraoxon, 3.4 nM for parathion and 2.1 nM for methyl parathion (S/N = 3). Common interfering species had no interference to the detection of p-nitrophenyl OPs. The sensor can be applicable to real samples measurement. Therefore, a simple, sensitive, reproducible and cost-effective electrochemical sensor was proposed for the fast direct determination of trace p-nitrophenyl OPs at low potential without deoxygenization.  相似文献   

12.
We have developed a reversed-phase high-performance liquid chromatography-pulsed amperometric detection (RP-HPLC-PAD) method for the detection of albiflorin and paeoniflorin in Paeoniae Radix and Wu-ji-san. Albiflorin and paeoniflorin were completely separated using 10% acetonitrile in 5 mM sodium phosphate buffer (pH 3.0) as an eluent and detected by PAD under alkaline conditions after using a post-column delivery system. The limit of detection (S/N = 3) and the limit of quantification (S/N = 10) were 0.10 and 0.35 ng for albiflorin, and 0.20 and 0.50 ng for paeoniflorin, respectively. The coefficients of linear regression were 0.9995 and 0.9999 for concentrations between 0.035 and 100 μg/mL. The intra- and inter-day precision (RSDs) was less than 3.56% in Paeoniae Radix and Wu-ji-san. The average recoveries from Paeoniae Radix and Wu-ji-san were 99.01–100.94% and 99.46–100.64%. This method shows higher selectivity than HPLC–UV method for analyzing albiflorin and paeoniflorin in Chinese medicinal preparation.  相似文献   

13.
We report a new nonenzymatic amperometric detection of ascorbic acid (AA) using a glassy carbon (GC) disk electrode modified with hollow gold/ruthenium (hAu–Ru) nanoshells, which exhibited decent sensing characteristics. The hAu–Ru nanoshells were prepared by the incorporation of Ru on hollow gold (hAu) nanoshells from Co nanoparticle templates, which enabled AA selectivity against glucose without aid of enzyme or membrane. The structure and electrocatalytic activities of the hAu–Ru catalysts were characterized by spectroscopic and electrochemical techniques. The hAu–Ru loaded on GC electrode (hAu–Ru/GC) showed sensitivity of 426 μA mM−1 cm−2 (normalized to the GC disk area) for the linear dynamic range of <5 μM to 2 mM AA at physiological pH. The response time and detection limit were 1.6 s and 2.2 μM, respectively. Furthermore, the hAu–Ru/GC electrode displayed remarkable selectivity for ascorbic acid over all potential biological interferents, including glucose, uric acid (UA), dopamine (DA), 4-acetamidophenol (AP), and nicotinamide adenine dinucleotide (NADH), which could be especially good for biological sensing.  相似文献   

14.
Six selected primary carbamate insecticides, methomyl, carbaryl, carbofuran, propoxur, isoprocarb, and promecarb, were hydrolyzed in alkaline solution, resulting in electroactive derivatives detectable at a platinum (Pt) electrode poised at +0.8 V vs Ag/AgCl (3 M NaCl). The Pt electrode was inserted into a small electrochemical cell and positioned close to the capillary outlet as an end-column detector to detect the carbamate derivatives after electrophoretic separation. Based on their predicted pKa values and aqueous solubilities, micellar electrokinetic chromatography (MEKC) was optimized for baseline separation of the derivatives using 20 mM borate, pH 10.2 containing 20 mM sodium dodecyl sulfate as a running buffer. When combined with solid-phase extraction (SPE) on octadecyl silica, a preconcentration factor of 100-fold achieved detection to 0.5 μM methomyl and to 0.01 μM for the remaining five pesticides, significantly below the level regulated by government agencies of most countries. The SPE-MEKC method when applied to the separation and analysis of spiked river water and soil samples, yielded results with excellent reproducibility, recovery and selectivity.  相似文献   

15.
Column switching HPLC with electrochemical detection (HPLC-ED), which consists of one pre-column and two electrochemical detectors subsequent to each analytical column, called HPLC-2ED, has been developed for determining isoflavones (daidzin, genistin, daidzein, and genistein) with high sensitivity. In the present HPLC-2ED, the eluted daidzin and genistin from the pre-column were separated on an analytical column using a methanol–water–phosphoric acid mixture (30:70:0.5) as the mobile phase (MP), and daidzein and genistein were separated on another analytical column using a methanol–water–phosphoric acid mixture (50:50:0.5). The way of the elute flow from the pre-column was changed by rotating the switching valve at 17 min. The difference in retention times of genistein between isocratic HPLC-ED and HPLC-2ED was 52.2 min. The detection limit (S/N = 3) per column injection (5 μL) of genistein was 0.5 pg. The sensitivity by the present method is superior to that of previously reported gradient HPLC-ED for the determination of isoflavones.  相似文献   

16.
A novel method for selective determination of Cr(III) and Cr(VI) in environmental water samples was developed based on target-induced fluorescence quenching of glutathione-stabilized gold nanoclusters (GSH-Au NCs). Fluorescent GSH-Au NCs were synthesized by a one-step approach employing GSH as reducing/protecting reagent. It was found that Cr(III) and Cr(VI) showed pH-dependent fluorescence quenching capabilities for GSH-Au NCs, and thus selective determination of Cr(III) and Cr(VI) could be achieved at different pHs. Addition of EDTA was able to effectively eliminate the interferences from other metal ions, leading to a good selectivity for this method. Under optimized conditions, Cr(III) showed a linear range of 25–3800 μg L−1 and a limit of detection (LOD) of 2.5 μg L−1. The Cr(VI) ion demonstrated a linear range of 5–500 μg L−1 and LOD of 0.5 μg L−1. The run-to-run relative standard deviations (n = 5) for Cr(III) and Cr(VI) were 3.9% and 2.8%, respectively. The recoveries of Cr(III) and Cr(VI) in environmental water samples were also satisfactory (76.3–116%). This method, with its simplicity, low cost, high selectivity and sensitivity, could be used as a promising tool for chromium analysis in environmental water samples.  相似文献   

17.
A screening test based on laser-induced fluorescence (LIF) and a method for individual identification – quantitation of aflatoxins (AFs) in olive leaves and drupes, based on chromatographic separation and triple-quad mass-spectrometry detection with electrospray ionization in positive mode, is here reported. The sensitivity and selectivity of both methods are enhanced by a preconcentration–cleanup step developed by a Prospekt station. The analysis frequency is at least 3.5 samples/h. The screening test makes able to detect the target analytes at concentrations of 0.7 μg/kg without “false negatives”. The LC–MS/MS method provides limits of detection (LOD) and quantification (LOQ) ranging between 0.01–0.03 and 0.03–0.11 μg/kg, respectively. The linear dynamic range is between LOQ–50 μg/kg. The between-day precision, expressed as relative standard deviation, ranges between 0.97–2.86% and the within laboratory reproducibility, also expressed as RSD, between 1.63% and 4.84%.  相似文献   

18.
A nitrogen-doped graphene/carbon nanotubes (NGR–NCNTs) nanocomposite was employed into the study of the electrochemical sensor via electrodeposition for the first time. The morphology and structure of NGR–NCNTs nanocomposite were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. Meanwhile, the electrochemical performance of the glassy carbon electrode (GCE) modified with electrodeposited NGR–NCNTs (ENGR–NCNTs/GCE) towards caffeine (CAF) and vanillin (VAN) determination was demonstrated by cyclic voltammetry (CV) and square wave voltammetry (SWV). Under optimal condition, ENGR–NCNTs/GCE exhibited a wide linearity of 0.06–50 μM for CAF and 0.01–10 μM for VAN with detection limits of 0.02 μM and 3.3 × 10−3 μM, respectively. Furthermore, the application of the proposed sensor in food products was proven to be practical and reliable. The desirable results show that the ENGR–NCNTs nanocomposite has promising potential in electrocatalytic biosensor application.  相似文献   

19.
Supramolecular solvents are here proposed firstly as extractants in solid sample microextractions. The approach was evaluated by extracting flumequine (FLU) and oxolinic acid (OXO), two widely used veterinary medicines, from fish and shellfish muscle using a supramolecular solvent made up of decanoic acid (DeA) reverse micelles. The antibiotics were extracted in a single step (∼15 min), at room temperature, using 400 μL of solvent. After centrifugation, an aliquot of the extract was directly analyzed by liquid chromatography and fluorescence, without the need of clean-up or solvent evaporation. Contrary to the previously reported methods, both OXO and FLU were quantitatively extracted from fish and shellfish, independently of sample composition. The high extraction efficiencies observed for these antibiotics were a consequence of their amphiphilic character which resulted in the formation of DeA-OXO and DeA-FLU mixed aggregates. The quality parameters of this quantitative method including sensitivity, linearity, selectivity, repeatability, trueness, ruggedness, stability, decision limit and detection capability were evaluated according to the 2002/657/EC Commission Decision. Quantitation limits in the different samples analyzed (salmon, sea trout, sea bass, gilt-head bream, megrim and prawns) ranged between 6.5 and 22 μg kg−1 for OXO and, 5 and 15 μg kg−1 for FLU. These limits were far below the current maximum residue limits (MRLs) set by the European Union (EU) (i.e. 100 and 600 μg kg−1, for OXO and FLU, respectively). The trueness of the method was determined by analyzing a Certified Reference Material (CMR, BCR®-725) consisting of a lyophilised salmon tissue material. Recoveries for fortified samples (50–100 μg kg−1 of OXO and 50–600 μg kg−1 of FLU) and their relative standard deviations were in the intervals 99–102% and 0.2–5%, respectively. The repeatability, expressed as relative standard deviation, was 3.6% for OXO and 2.3% for FLU ([OXO] = [FLU] = 200 μg kg−1 and n = 11).  相似文献   

20.
Monomethylarginine, asymmetric dimethylarginine and symmetric dimethylarginine were separated on a Wakopak Combi ODS with an acetonitrile–100 mm potassium phosphate buffer (pH 7.0; 1:1, v/v). Dimethylarginines were derived from o‐phthalaldehyde for the fluorescence detector and from 6‐ferrocenyl‐1‐hexanethiol for the electrochemical detector. The detection limits of the dimethylarginines in spiked plasma were 0.3–0.5 pmol by electrochemical detection and 1–2 pmol by fluorescence detection. The detection limits were improved over 30 times by electrochemical detection and 10 times by fluorescence detection compared with previous reports. In previous derivatization liquid chromatography, the reaction solutions, o‐phthalaldehyde, 2‐mercaptethanol and dimethylarginines were unstable and required quick derivatization at 4°C. By our proposed pre‐column methods, the dimethylarginines were derivatized at room temperature and the fluorescent products were stable for 6 h. The manipulation performance was greatly advanced compared with previous LC reports. This is the first report on stable and sensitive dimethylarginines by dual detection. The selectivity was also improved by dual detection. The proposed method was applied to preliminary monitoring of dimethylargines in plasma and urine. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号