首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper reports the conditions of online hyphenation of supercritical fluid chromatography (SFC) with twin comprehensive two-dimensional gas chromatography (twin-GC × GC) for detailed characterization of middle distillates; this is essential for a better understanding of reactions involved in refining processes. In this configuration, saturated and unsaturated compounds that have been fractionated by SFC are transferred on two different GC × GC columns sets (twin-GC × GC) placed in the same GC oven. Cryogenic focusing is used for transfer of fractions into the first dimension columns before simultaneous GC × GC analysis of both saturated and unsaturated fractions. The benefits of SFC–twin-GC × GC are demonstrated for the extended alkane, iso-alkane, alkene, naphthenes and aromatics analysis (so-called PIONA analysis) of diesel samples which can be achieved in one single injection. For that purpose, saturated and unsaturated compounds have been separated by SFC using a silver loaded silica column prior to GC × GC analysis. Alkenes and naphthenes are quantitatively recovered in the unsaturated and saturated fractions, respectively, allowing their identification in various diesel samples. Thus, resolution between each class of compounds is significantly improved compared to a single GC × GC run, and for the first time, an extended PIONA analysis of diesel samples is presented.  相似文献   

2.
Valve-based comprehensive two-dimensional gas chromatography (GC × GC) is one of the most compact, robust, and inexpensive GC × GC instrument designs. The major drawback of a valve-based modulation configuration lies in diminished detection sensitivity. This loss in sensitivity is because under typical operating conditions the fraction of the first column (i.e., column 1) effluent transferred to the second column (i.e., column 2) is likely to be ∼5-10%. To address this loss in sensitivity, we report the development of a unique total-transfer (i.e., 100%) valve-based GC × GC, without adding complexity to the instrumentation. The new instrument design relies upon simply blocking one of the appropriate ports of the high-speed six-port diaphragm valve that is used as the modulator between columns 1 and 2. The modulation period and difference in head pressure between columns 1 and 2 are found to be the two primary variables that are controlled to provide good detection sensitivity and 100% mass transfer from column 1 to column 2. The detection sensitivity is better with a longer the modulation period. A limit of detection of 0.03 ng/μl was obtained for octane. This sensitive GC × GC configuration is also shown to provide acceptable separation peak capacity, with good separations achieved for real complex samples: gasoline and Eucalyptus oil, where compounds were spread out over much of the two-dimensional separation space. In principle, this total-transfer, valve-based GC × GC is more portable and less expensive than currently available GC × GC instrumentation.  相似文献   

3.
In this study, a new system for analysis using a dual comprehensive two-dimensional gas chromatography/targeted multidimensional gas chromatography (switchable GC × GC/targeted MDGC) analysis was developed. The configuration of this system not only permits the independent operation of GC, GC × GC and targeted MDGC analyses in separate analyses, but also allows the mode to be switched from GC × GC to targeted MDGC any number of times through a single analysis. By incorporating a Deans switch microfluidics transfer module prior to a cryotrapping device, the flow stream from the first dimension column can be directed to either one of two second dimension columns in a classical heart-cutting operation. Both second columns pass through the cryotrap to allow solute bands to be focused and then rapidly remobilized to the respective second columns. A short second column enables GC × GC operation, whilst a longer column is used for targeted MDGC. Validation of the system was performed using a standard mixture of compounds relevant to essential oil analysis, and then using compounds present at different abundances in lavender essential oil. Reproducibility of retention times and peak area responses demonstrated that there was negligible variation in the system over the course of multiple heart-cuts, and proved the reliable operation of the system. An application of the system to lavender oil, as a more complex sample, was carried out to affirm system feasibility, and demonstrate the ability of the system to target multiple components in the oil. The system was proposed to be useful for study of aroma-impact compounds where GC × GC can be incorporated with MDGC to permit precise identification of aroma-active compounds, where heart-cut multidimensional GC-olfactometry detection (MDGC-O) is a more appropriate technology for odour assessment.  相似文献   

4.
The present research is based on the full exploitation of the separation power of a 0.05 mm internal diameter (ID) capillary, as a comprehensive two-dimensional (2D) GC (GC × GC) secondary column, with the objective of attaining very high-resolution second dimension separations. The aim was achieved by using a split-flow system developed in previous research [P.Q. Tranchida, A. Casilli, P. Dugo, G. Dugo, L. Mondello, Anal. Chem. 79 (2007) 2266], and a dual-oven GC × GC instrument. The column combination employed consisted of a polar 30 m × 0.25 mm ID column connected, by means of a T union, to a detector-linked high-resolution 1.1 m × 0.05 mm ID apolar analytical column and to a 0.33 m × 0.05 mm ID retention gap; the latter was connected to a manually operated split valve. As previously demonstrated, the use of a split valve enables the regulation of gas flows through both analytical columns, generating the most appropriate gas linear velocities. Comprehensive 2D GC experiments were carried out on Arabica roasted coffee volatiles (previously extracted by means of solid-phase microextraction) with the split-valve closed (equal to what can be defined as conventional GC × GC) and with the split-valve opened at various degrees. The reasons why it is absolutely not effective to use a 0.05 mm ID column as second dimension in a conventional GC × GC instrument will be discussed and demonstrated. On the contrary, the use of a 0.05 mm ID column as second dimension, under ideal conditions in a split-flow, twin-oven system, will also be illustrated and discussed.  相似文献   

5.
The design of a new interface to hyphen high efficiency supercritical fluid chromatography (SFC) and fast RPLC in a comprehensive configuration is described. SFC x RPLC is a viable alternative to normal phase (NP) LC x RPLC and is characterized by high orthogonality. Compared to NPLC x RPLC an additional advantage is the expansion of supercritical carbon dioxide (CO(2)) when exposed to atmospheric pressure leading to fractions consisting of solvents that are miscible with the second dimension RPLC mobile phase. The interface consists of a two-position/ten-port switching valve equipped with two packed octadecyl silica (C(18)) loops for effective trapping and focusing of the analytes after elution from the SFC dimension. The addition of a water make-up flow to the SFC effluent prior to entering the loops is of fundamental importance to efficiently focus the solutes on the C(18) material and to reduce interferences of expanded CO(2) gas on the second dimension separation. The features of the system are illustrated with the analysis of a lemon oil sample.  相似文献   

6.
Ha J  Seo D  Shin D 《Talanta》2011,85(1):252-258
Trans fatty acids (TFAs) are present in meat and dairy products as m ruminant animals and in vegetable fats due to partial hydrogenation. This study aimed to discriminate between natural (N-TFA) and hydrogenated trans fatty (H-TFA) acids by GC × GC-flame ionization detection (GC × GC-FID) and comprehensive GC × GC-time-of-flight mass spectrometry (GC × GC-TOFMS). The separation of two kinds of trans fats, vaccenic acid (18:1 trans-11) and elaidic acid (18:1 trans-9), was performed using GC × GC-FID and GC × GC-TOFMS. A 100 m × 0.25 mm I.D. × 0.2 μm (film thickness) SP-2560 (bis-cyanopropyl polysiloxane) fused capillary column (first separation dimension, 1D) was coupled to a 1.5 m × 0.18 mm I.D. × 0.18 μm (film thickness) RTX-5 (5% diphenyl/95% dimethyl polysiloxane) fused capillary column (second separation dimension, 2D). The RSD of the intra-day repeatability by both GC × GC-FID and GC × GC-TOFMS for elaidic and vaccenic acids was ≤9.56% and ≤9.97%, and the RSD of the inter-day repeatability was ≤8.49 and ≤9.06%, respectively. It was found that the V/E value (vaccenic acid to elaidic acid ratio) could be used to distinguish H-TFA from N-TFA and to evaluate the quality of the fatty foods.  相似文献   

7.
(Liquid + liquid) equilibrium (LLE) data for the ternary system of (water + butyric acid + oleyl alcohol) at T = (298.15, 308.15, and 318.15) K are reported. Complete phase diagrams were obtained by determining solubility and the tie-line data. The reliability of the experimental tie lines was confirmed by using Othmer-Tobias correlation. The UNIFAC method was used to predict the phase equilibrium data. The phase diagrams for the ternary mixtures including both the experimental and correlated tie lines are presented. Distribution coefficients and separation factors were evaluated for the immiscibility region. A comparison of the solvent extracting capability was made with respect to distribution coefficients, separation factors, and solvent-free selectivity bases for T = (298.15, 308.15, and 318.15) K. It is concluded that oleyl alcohol may serve as an adequate solvent to extract butyric acid from its dilute aqueous solutions.  相似文献   

8.
Experimental (liquid + liquid) equilibria involving ionic liquids {1,3-dimethylimidazolium methyl sulfate (MMIM MeSO4)}, {2-propanol + ethyl acetate + 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM PF6)} and {2-propanol + ethyl acetate + 1-hexyl-3-methylimidazolium hexafluorophosphate (HMIM PF6)} were carried out to separate the azeotropic mixture ethyl acetate and 2-propanol. Selectivity and distribution ratio values, derived from the tie-lines data, were presented in order to analyze the best separation solvent in a liquid extraction process. Experimental (liquid + liquid) equilibria data were compared with the correlated values obtained by means of the NRTL, Othmer-Tobias and Hand equations. These equations were verified to accurately correlate the experimental data.  相似文献   

9.
(Solid + liquid) phase diagrams, SLE have been determined for (octan-1-ol, or nonan-1-ol, or decan-1-ol, or undecan-1-ol + benzonitrile) and for (hexylamine, or octylamine, or decylamine, or 1,3-diaminopropane + benzonitrile) using a cryometric dynamic method at atmospheric pressure. Simple eutectic systems with complete immiscibility in the solid phase and complete miscibility on the liquid phase have been observed. The solubility decreases with an increase of the number of carbon atoms in the alkan-1-ol, or amine chain. The temperature of the eutectic points increases and shifts to lower alkan-1-ol, or amine mole fractions as the alkyl chain length of the alkan-1-ol, or amine increases. The higher intermolecular interaction was observed for the (alkan-1-ol + benzonitrile) systems.  相似文献   

10.
Peracetic acid (PAA) has been selectively electroanalyzed in the presence of a large excess of hydrogen peroxide (H2O2), about 500 fold that of PAA, using Au (1 1 1)-like gold electrode in acetate buffer solutions of pH 5.4. Au(1 1 1)-like gold electrode was prepared by a controlled reductive desorption of a previously assembled thiol, typically cysteine, monolayer onto the polycrystalline gold (poly-Au) electrode. Cysteine molecules were selectively removed from the Au(1 1 1) facets of the poly-Au electrode, keeping the other two facets (i.e., Au(1 1 0) and Au(1 0 0)) under the protection of the adsorbed cysteine. It has been found that Au(1 1 1)-like gold electrode positively shifts the reduction peak of PAA, while, fortunately, shifts the reduction peak of H2O2 negatively, achieving a large potential separation (around 750 mV) between the two reduction peaks as compared with that (around 450 mV) obtained at the poly-Au electrode. This large potential separation between the two reduction peaks enabled the analysis of PAA in the presence of a large excess of H2O2. In addition, the positive shift of the reduction peak of PAA gives the present method a high immunity against the interference of the dissolved oxygen.  相似文献   

11.
(Liquid + liquid) equilibrium (LLE) data of the solubility (binodal) curves and tie-line end composition were examined for mixtures of {water (1) + propionic acid (2) + octanol or nonanol or decanol or dodecanol (3)} at T = 298.15 K and 101.3 ± 0.7 kPa. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. The LLE data of the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

12.
Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC–TOFMS) is a well-established instrumental platform for complex samples. However, chemometric data analysis is often required to fully extract useful information from the data. We demonstrate that retention time shifting from one modulation to the next, Δ2tR, is not sufficient alone to quantitatively describe the trilinearity of a single GC × GC–TOFMS run for the purpose of predicting the performance of the chemometric method parallel factor analysis (PARAFAC). We hypothesize that analyte peak width on second dimension separations, 2Wb, also impacts trilinearity, along with Δ2tR. The term trilinearity deviation ratio, TDR, which is Δ2tR normalized by 2Wb, is introduced as a quantitative metric to assess accuracy for PARAFAC of a GC × GC–TOFMS data cube. We explore how modulation ratio, MR, modulation period, PM, temperature programming rate, Tramp, sampling phase (in-phase and out-of-phase), and signal-to-noise ratio, S/N, all play a role in PARAFAC performance in the context of TDR. Use of a PM in the 1–2 s range provides an optimized peak capacity for the first dimension separation (500–600) for a 30 min run, with an adequate peak capacity for the second dimension separation (12–15), concurrent with an optimized two-dimensional peak capacity (6000–7500), combined with sufficiently low TDR values (0–0.05) to facilitate low quantitative errors with PARAFAC (0–0.5%). In contrast, use of a PM in the 5 s or greater range provides a higher peak capacity on the second dimension (30–35), concurrent with a lower peak capacity on the first dimension (100–150) for a 30 min run, and a slightly reduced two-dimensional peak capacity (3000–4500), and furthermore, the data are not sufficiently trilinear for the more retained second dimension peaks in order to directly use PARAFAC with confidence.  相似文献   

13.
(Liquid + liquid) equilibrium (LLE) data for the {water + acetic acid + dibasic esters mixture (dimethyl adipate + dimethyl glutarate + dimethyl succinate)} system have been determined experimentally at T = (298.2, 308.2, and 318.2) K. Complete phase diagrams were obtained by determining solubility curve and tie-line data. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. The UNIFAC model was used to predict the phase equilibrium in the system using the interaction parameters determined from experimental data between CH2, CH3COO, CH3, COOH, and H2O functional groups. Distribution coefficients and separation factors were compared with previous studies.  相似文献   

14.
In this work, a methodology to characterise the volatile and semi-volatile compounds from marine salt by headspace solid-phase microextraction (HS-SPME) and comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC/TOFMS) was developed. Samples from two saltpans of Aveiro, in Portugal, with diverse locations, obtained over three years (2004, 2005, and 2007) were analysed. A 50/30 μm divinylbenzene/carboxen/polydimethylsiloxane SPME fibre was used. The volatiles present in the headspace of the solid salt samples (crystals) were equilibrated overnight at 60 °C and extracted for 60 min prior to injection in the GC × GC/TOFMS. 157 compounds, distributed over the chemical groups of hydrocarbons, aldehydes, esters, furans, haloalkanes, ketones, ethers, alcohols, terpenoids, C13 norisoprenoids, and lactones were detected across the samples. Furans, haloalkanes and ethers were identified for the first time in marine salt. The large number of co-elutions on the first column that were resolved by the GC × GC system revealed the complexity of marine salt volatile composition. The existence of a structured 2D chromatographic behaviour according to volatility, in the first dimension (1D), and primarily polarity, in the second dimension (2D), was demonstrated, allowing more reliable identifications. The resolution and sensitivity of GC × GC/TOFMS enabled the separation and identification of a higher number of volatile compounds compared to GC–qMS, allowing a deeper characterisation of this natural product.  相似文献   

15.
Flow modulation of methane-doped carrier gas is used to visualize the second dimension hold-up time in GC × GC continuously throughout the run. This provides an internal reference of hold-up time and presents a straightforward means of examining retention in each dimension of GC × GC. Retention factors on similar and dissimilar column pairs are examined. Stationary phase bleed is shown to be retained by the second dimension column.  相似文献   

16.
A sample of tobacco essential oil was analyzed using gas chromatography-mass spectrometry (GC/MS) and comprehensive two-dimensional gas chromatography coupled to a time-of-flight mass spectrometry (GC × GC/TOFMS), respectively. In the GC/MS analysis, serially coupled columns were used. By comparing the GC/MS results with GC × GC/TOFMS results, many more components in the essential oil could be found within the two-dimensional separation space of GC × GC. The quantitative determination of components in the essential oil was performed by GC × GC with flame ionization detection (FID), using a method of multiple internal standards calibration.  相似文献   

17.
The identification and quantification of complex mixtures of cis and trans octadecenoic (18:1) fatty acid isomers presents a major challenge for conventional one-dimensional GC/FID analysis of their methyl esters. We have compared the use of two methods to achieve optimized separations of positional and geometrical octadecenoic fatty acid isomers—comprehensive two-dimensional gas chromatography (GC × GC), and silver ion high performance liquid chromatography interfaced to atmospheric pressure photoionization (APPI) mass spectrometry. Nine isomers of octadecenoic acid methyl ester were well separated on a single silver ion column with a mobile phase of 0.018% acetonitrile and 0.18% isopropanol in hexane. Reproducible retention times were obtained with relative standard deviations of around 1% over 5 injections. The extra selectivity and reproducibility afforded by APPI-MS, together with the wide separation of cis and trans isomers by silver ion chromatography, resulted in a promising method for measurement of octadecenoic acid FAME. The GC × GC separation was performed using various column combinations, and optimal separation was obtained by coupling an ionic liquid column (Supelco SLB-IL100 [1,9-di(3-vinyl-imidazolium) nonane bis(trifluoromethyl) sulfonyl imidate]) in the first dimension with a SGE BPX50 (50% phenyl polysilphenylene-siloxane) in the second dimension. These methods have been applied to the analysis of octadecenoic acid in milk and beef fat.  相似文献   

18.
Isobaric (vapour + liquid) equilibrium (VLE) data for {2-propanol (1) + water (2) + ammonium thiocyanate (3)} were obtained at 101.3 kPa experimentally. An all-glass Fischer-Labodest type still capable of handling pressures from (0.25 to 400) kPa and temperatures up to 523.15 K was used. (Vapour + liquid) equilibrium data of (2-propanol + water) were also obtained at 101.3 kPa experimentally. An equation is proposed to fit the data of salt-containing systems using dimensionless groups called relative ratio. The proposed model was also tested for the salt-containing systems given from the literature.  相似文献   

19.
Spin-polarized density functional theory calculation is employed to study the adsorption and dissociation of NO2 molecule on Cu(1 1 1) surface. It is shown that the most favorable adsorption structure is the NO2 (T,T-O-,O′-nitrito) configuration which has an adsorption energy of −1.49 eV. The barriers for step-wise NO2 dissociation reaction, NO2(g) → N(a) + 2O(a), are 1.05 (for O–N–O bond activation), and 2.08 eV (for N–O bond activation), respectively, and the entire process is 0.6 eV exothermic. The energetics of single N–O dissociation with and without the presence of N atom or O atom on the surface are also calculated. The results indicate that in the presence of O atom on Cu(1 1 1) surface would raise the N–O dissociation barrier, whereas in the presence of N atom decrease it. The interaction nature between adsorbates and substrate is analyzed by the local density of states (LDOS) calculation.  相似文献   

20.
The surface tension of the binary refrigerant mixture dimethyl ether (RE170)(1) + propane (R290)(2) at three mass fraction of w1=0.3007,0.4975 ??and ??0.6949w1=0.3007,0.4975 ??and ??0.6949 was measured in the temperature range from 243 to 333 K with a differential capillary rise method. The uncertainties of the measurement of the temperature and the surface tension were estimated to be within ±10 mK and ±0.2 mN m−1, respectively. A correlation for the surface tension of the binary refrigerant mixture RE170 + R290 was developed as a function of the composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号