首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flows around rectangular cylinders with a series of width-to-height ratios are calculated by means of the Improved Finite Analytic Method (IFAM) and the formation, development and shedding of vortices from the cylinders are simulated successfully. According to these results of time-dependent processes the physical phenomena in the flows are investigated in detail, and the discontinuity of Strouhal number is explained in the case of the width-to-height ratio equal to 3.0. The numerical solutions here show good agreement with the experimental results. In addition, based on several hundreds of the calculated flow patterns a moving picture is made by the computer image processing technology and recorded on a video tape, and then the vivid pictures of the physical process of vortex-shedding can be replayed later and analysed in detail. The project supported by the National Natural Science Foundation of China  相似文献   

2.
A variety of studies reported in the literature have established that initially well mixed suspensions subjected to non-homogeneous shear flows attain an anisotropic particulate structure. It has also been shown that non-homogeneous shearing causes suspensions of unimodal spheres to demix, i.e., gradients in solids concentration are formed. The objective of this study was to determine the effect of non-homogeneous shear flows on suspensions of bimodal particles, and specifically, to determine if the solids concentration gradients which develop are accompanied by size segregation of the coarse with respect to the fine fraction. We used the simplest and most direct methods to determine the relative solids concentrations: visual observation of tracer particles in transparent suspensions and physical separation of the coarse and fine solid fractions. Three different types of non-homogeneous shear flows were examined, and in each case the data support two main conclusions: 1) suspended particles migrate from regions of high shear rate to regions of low shear rate, and 2) the coarse fraction of particles migrates much faster than the fine fraction, leading to size segregation of initially well-mixed suspensions. While the former conclusion is consistent with other studies reported in the literature, to our knowledge this paper provides the first data supporting and, to a limited extent, quantifying the latter conclusion.  相似文献   

3.
In this paper, a modified particle temperature model for concentrated suspensions is proposed, which allows for the shear-induced migration of particles. The migration is modelled by a convection–diffusion equation, derived from the particle mass and momentum conservation. The model is implemented in an unstructured finite volume method and is utilized to investigate the shear-induced particle migration in channel flow. The profiles and the evolution of the velocity, concentration and particle temperature along the channel are presented. The entrance lengths needed to reach a fully developed profile of the corresponding field variables are also checked against different averaged concentrations and different relative particle radii. Comparison with available experimental data is made whenever possible.  相似文献   

4.
This paper presents a two-dimensional SPH model designed to simulate free-surface flows of dense granular materials. Smoothed particle hydrodynamics (SPH) is a mesh-free numerical method based on a Lagrangian discretization of the continuum mass and momentum conservation equations. The rheology of dense granular materials is modelled using a new local constitutive law recently proposed by Jop et al. (Nature, 2006). Of the viscoplastic class, this law is characterized by an apparent viscosity depending both on the local strain rate and local pressure. Validation test cases of the model in steady and unsteady configurations are presented. For steady cases (vertical chute flow and uniform free-surface layers on inclines), excellent agreement with analytical predictions is obtained. In the unsteady case, the simulations satisfactorily capture the dynamics of gravity-driven surges observed in experiments, including behaviours that are very specific to granular materials. Among the various parameters involved in the computations, the influence of SPH particle configuration within the flow and of the threshold viscosity used in the regularization of the constitutive yield criterion are particularly discussed.  相似文献   

5.
6.
Langmuir monolayers consist of amphiphilic molecules at the air–water interface and can be modeled as two-dimensional fluids. Earlier experiments [D.J. Olson, G.G. Fuller, J. Non-Newtonian Fluid Mech. 89 (2000) 187–207] on 4:1 contraction and 4:1 expansion flows have been simulated using an integral constitutive equation of the K-BKZ type, suitably modified to account for strain-thickening in the planar extensional viscosity. The model has been used to fit linear viscoelastic data (G′ and G″) and the shear viscosity (ηS), while the amount of strain-hardening is assumed, due to lack of experimental data. The simulations are in good agreement with the experiments on Newtonian monolayers, which show no vortices in the contraction but large inertial vortices in the expansion. For the viscoelastic monolayer (a poly-octadecyl methacrylate or PODMA), the opposite is true. The contraction flow shows vortices, while in the expansion flow the vortex activity is substantially reduced compared with the Newtonian one. The viscoelastic behavior is well captured by the model, provided that substantial strain-thickening is exhibited by the monolayer in planar extension. The latter behavior is very much like that for a branched LDPE melt, which also shows big vortices due to strain-hardening in planar as well as in uniaxial extension.  相似文献   

7.
A one-dimensional physical model and a numerical method for the simulation of heterogeneous detonation were proposed based on an Eulerian approach for heterogeneous flows. The combination of modern shock-capturing schemes in combination with a dynamically moving, adaptive grid ensure the properresolution of both reaction zones and flow discontinuities. Numerical examples illustrate the effect of the heat release due to heterogeneous combustion. Received August 4, 1995 / Accepted December 12, 1995  相似文献   

8.
In this paper, we discuss the application of spectral-based methods to simulation of particle-laden turbulent flows. The primary focus of the article is on the past and ongoing works by the authors. The particles are tracked in Lagrangian framework, while direct numerical simulation (DNS) or large-eddy simulation (LES) is used to describe the carrier-phase flow field. Two different spectral methods are considered, namely Fourier pseudo-spectral method and Chebyshev multidomain spectral method. The pseudo-spectral method is used for the simulation of homogeneous turbulence. DNS of both incompressible and compressible flows with one- and two-way couplings are reported. For LES of particle-laden flows, two new models, developed by the authors, account for the effect of sub-grid fluctuations on the dispersed phase. The Chebyshev multidomain method is employed for the works on inhomogeneous flows. A number of canonical flows are discussed, including flow past a square cylinder, channel flow and flow over backward-facing step. Ongoing research on particle-laden LES of inhomogeneous flows is briefly reported.  相似文献   

9.
A numerical formulation for Eulerian–Lagrangian simulations of particle-laden flows in complex geometries is developed. The formulation accounts for the finite-size of the dispersed phase. Similar to the commonly used point-particle formulation, the dispersed particles are treated as point-sources, and the forces acting on the particles are modeled through drag and lift correlations. In addition to the inter-phase momentum exchange, the presence of particles affects the fluid phase continuity and momentum equations through the displaced fluid volume. Three flow configurations are considered in order to study the effect of finite particle size on the overall flowfield: (a) gravitational settling, (b) fluidization by a gaseous jet, and (c) fluidization by lift in a channel. The finite-size formulation is compared to point-particle representations, which do not account for the effect of finite-size. It is shown that the fluid displaced by the particles plays an important role in predicting the correct behavior of particle motion. The results suggest that the standard point-particle approach should be modified to account for finite particle size, in simulations of particle-laden flows.  相似文献   

10.
Suspensions of small nonspherical particles having dipolar moments exhibit non-Newtonian behavior under the influence of shear and external fields. Numerical methods are presented for calculating the rheological and rheo-optical properties of dilute suspensions of Brownian particles having permanent dipoles subject to time-dependent shear and external fields. The numerical methods employ the Galerkin method of weighted residuals to solve the differential equation for the particle orientation distribution function. The steady-state shear flow intrinsic viscosity of suspensions of particles with sufficiently extreme aspect ratio is predicted to exhibit a maximum value attained for intermediate shear rates at selected field orientations. These numerical results provide valuable insight into the coupling which occurs between the effects of rotary Brownian motion, the hydrodynamic resistance of nonspherical particles, and the external torque exerted on dipolar particles. The results are applicable to both suspensions of magnetic particles and electrically dipolar particles.  相似文献   

11.
The fully developed turbulent flows over wavy boundaries are investigated by means of thek-ε model. Predicted flow characteristics over rigid wavy walls are in good agreement with the vailable experimental data. Moreover drag reduction has been found in a 2-dimensional channel with periodical wavy walls. The energy input from turbulent wind to regular waves is also studied in the paper by the same turbulence model with carefully posed boundary conditions at wind-wave interface. Better agreement has been obtained in the predication of the growth rates of wind waves as compared with the previous theoretical and numerical results. The project supported by the National Natural Science Foundation of China.  相似文献   

12.
Particle fluctuation and gas turbulence in dense gas-particle flows are less studied due to complexity of the phenomena. In the present study, simulations of gas turbulent flows passing over a single particle are carried out first by using RANS modeling with a Reynolds stress equation turbulence model and sufficiently fine grids, and then by using LES. The turbulence enhancement by the particle wake effect is studied under various particle sizes and relative gas velocities, and the turbulence enhancement is found proportional to the particle diameter and the square of velocity. Based on the above results, a turbulence enhancement model for the particle-wake effect is proposed and is incorporated as a sub-model into a comprehensive two-phase flow model, which is then used to simulate dilute gas-particle flows in a horizontal channel. The simulation results show that the predicted gas turbulence by using the present model accounting for the particle wake effect is obviously in better agreement with the experimental results than the prediction given by the model not accounting for the wake effect. Finally, the proposed model is incorporated into another two-phase flow model to simulate dense gasparticle flows in a downer. The results show that the particle wake effect not only enhances the gas turbulence, but also amplifies the particle fluctuation.  相似文献   

13.
The aim of this note is to present the exact solutions corresponding to two types of unsteady flows of an Oldroyd-B fluid in a channel of rectangular cross-section. The solutions that have been obtained satisfy both the associate partial differential equations and all imposed initial and boundary conditions. For λr or λ→0 they tend toward similar solutions for a Maxwell or second-grade fluid. If both λr and λ→0, the solutions for Navier-Stokes fluids are recovered.  相似文献   

14.
In this paper we wish to demonstrate to what extent the numerical method regularized smoothed particle hydrodynamics (RSPH) is capable of modelling shocks and shock reflection patterns in a satisfactory manner. The use of SPH based methods to model shock wave problems has been relatively sparse, both due to historical reasons, as the method was originally developed for studies of astrophysical gas dynamics, but also due to the fact that boundary treatment in Lagrangian methods may be a difficult task. The boundary conditions have therefore been given special attention in this paper. Results presented for one quasi-stationary and three non-stationary flow tests reveal a high degree of similarity, when compared to published numerical and experimental data. The difference is found to be below 5, in the case where experimental data was found tabulated. The transition from regular reflection (RR) to Mach reflection (MR) and the opposite transition from MR to RR are studied. The results are found to be in close agreement with the results obtained from various empirical and semi-empirical formulas published in the literature. A convergence test shows a convergence rate slightly steeper than linear, comparable to what is found for other numerical methods when shocks are involved.  相似文献   

15.
An approximate equation governing the turbulent fluid velocity encountered along discrete particle path is used to derive the fluid/particle turbulent moments required for dispersed two-phase flows modelling. Then, closure model predictions are compared with results obtained from large-eddy simulation of particle fluctuating motion in forced isotropic fluid turbulence.  相似文献   

16.
Many natural rock systems contain small patches of different permeability which affect the flow of fluids through them. As these heterogeneities become smaller and more numerous, they become harder to model numerically. We consider how to reduce the computational effort required in simulations by incorporating their effects in the boundary conditions at the edges of each grid block. This is in contrast with current methods which involve often arbitrary changes in the fluid properties. The method is restricted to the case of widely-spaced patches, which simplifies interaction effects. The system then reduces to an array of dipoles, and two averaging methods are proposed for finite grid blocks. Several infinite systems, including vertical and horizontal bands, are also considered as further approximations. There is a great wealth of existing results from different fields which lead to identical mathematical problems and which can be used in these cases. Finally, we consider how to use these techniques when the precise configuration of the grid block is not known, but only its statistical properties. This can lead to results which are very different from the deterministic case.  相似文献   

17.
In many models for disperse two-phase flows, the pressure of the disperse phase is often assumed to be the same as that of the continuous phase, or differ only by an amount caused by the surface tension. This type of model is referred to as an equilibrium pressure model. Recent research indicates that the stress difference between the phases caused by dynamics of the motion can be significantly important in the modeling of disperse two-phase flows. Although this difference is still ignored in most calculations of disperse multiphase flows for various reasons, when an equilibrium pressure model is applied to continuous multiphase flows, a conceptual difficulty arises. For instance, the equilibrium pressure model cannot be used to study the tensile break of a sponge with interconnected pores, because the air in the pores can never go into tension while the sponge material does not break without tension.  相似文献   

18.
There are contradicted opinions on whether bubbles enhance or reduce the liquid turbulence. In this paper, the effect of void fraction and inlet velocity on the bubble–liquid two-phase turbulence of the multiple bubble–liquid jets in a two-dimensional channel is studied by using the two-phase second-order moment turbulence model. The results confirm the phenomena observed in experiments and reported in references that at a low void fraction and low inlet velocities the bubbles enhance the liquid turbulence, whereas at a high void fraction and high inlet velocities the bubbles reduce the liquid turbulence.The project supported by the China Special Funds for Major State Basic Research (G-1999-0222-08) and the Innovation and Technology Commission of Hong Kong and Aoyagi (H.K.) Ltd, Hong Kong, under the Grant No. UIM/122. The English text was polished by Keren Wang.  相似文献   

19.
An asymptotic model of a hydraulic-fracture flow of a sedimenting concentrated suspension is formulated on the basis of the two-fluid approach with account of transverse particle migration. In the thin-layer approximation, a two-dimensional system of equations averaged across the fracture is constructed with account for a nonuniform distribution of the particle concentration. As compared to the similar model without particle migration, the averaged two-dimensional equations contain modified coefficients which explicitly depend on the width of the flow core occupied by the particles. Using the model constructed, a numerical simulation is performed, which shows that the particle migration towards the fracture center results in the increase in the depth of particle penetration into the fracture and the suppression of gravitational convection in the vicinity of the leading front. The calculations are compared with available experimental data and an analytical formula for the height of the dense packed sediment. A good agreement between the analytical theory, the experiments, and the two-dimensional calculations is attained.  相似文献   

20.
In this work we provide numerical validation of the particle migration during flow of concentrated suspension in asymmetric T-junction bifurcation channel observed in a recent experiment [1]. The mathematical models developed to explain particle migration phenomenon basically fall into two categories, namely, suspension balance model and diffusive flux model. These models have been successfully applied to explain migration behavior in several two-dimensional flows. However, many processes often involve flow in complex 3D geometries. In this work we have carried out numerical simulation of concentrated suspension flow in 3D bifurcation geometry using the diffusive flux model. The simulation method was validated with available experimental and theoretical results for channel flow. After validation of the method we have applied the simulation technique to study the flow of concentrated suspensions through an asymmetric T-junction bifurcation composed of rectangular channels. It is observed that in the span-wise direction inhomogeneous concentration distribution that develops upstream persists throughout the inlet and downstream channels. Due to the migration of particles near the bifurcation section there is almost equal partitioning of flow in the two downstream branches. The detailed comparison of numerical simulation results is made with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号