首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The features of melt flow of LDPE and boron oxide oligomer blends during extrusion mixing are investigated. It is established that the extruder-wall pressure and the torque of the screw decrease monotonically with an increase in the boron oxide oligomer content up to 25 vol %. Exceeding this concentration threshold leads to a several-fold stepwise fall in of the mentioned characteristics. This result is explained within the concepts about spontaneous restructuring of the blend accompanied by an increase of the specific surface of phases and by slipping at the interface of the blend components that is caused by the planar structure of the boron oxide oligomer molecules.  相似文献   

2.
Introduction Polymer layeredsilicatenanocompositesexhibit somesuperiorcharacteristics,suchasthermal,me chanicalandbarrierproperties,incomparisonwiththe polymermatrixes[1—3].Intercalationpolymerization[4],polymersolutionintercalation[5]andpolymermeltinter…  相似文献   

3.

Flame retardant-modified sepiolite nanofiber (PSPHD-SEP) was fabricated through chemical grafting by introducing intumescent flame retardant oligomer (PSPHD) onto the surface of sepiolite fiber. Various sepiolite/low-density polyethylene (SEP/LDPE) composites have been prepared successfully via melt blending. The dispersion of various SEPs in LDPE matrix was observed by scanning electron microscope and transmission electron microscope. The thermal degradation behaviors of various SEP/LDPE composites with 3 mass% acid-modified sepiolite fiber (a-SEP) or PSPHD-SEP have been investigated employing thermogravimetric analysis/derivative thermogravimetry. The thermal degradation kinetics of neat LDPE, a-SEP/LDPE and PSPHD-SEP/LDPE systems was comparatively analyzed by means of Friedman and Flynn–Wall–Ozawa methods to further comprehend the effect of a-SEP and PSPHD-SEP on the thermal stability of LDPE. Due to the addition of PSPHD-SEP, the limiting oxygen index value of PSPHD-SEP/LDPE composite can reach 21.3%, and the UL-94V-2 rating is obtained. The cone calorimetry (CONE) tests showed that a reduced peak heat release rate can be achieved for PSPHD-SEP/LDPE composite accompanying with gas-phase fire retardant action.

  相似文献   

4.
The thermal and mechanical performance of composites with nano-sized cotton fillers embedded in low-density polyethylene (LDPE) is investigated. Microfibrillated cotton was prepared by microgrinding mechanical treatment of pulverized cotton (pCot) derived from waste T-shirts, resulting in nano-sized fibrils of the cellulose that retain high crystallinity. Film composites of LDPE with pCot before and after microgrinding were fabricated through melt extrusion and the effect of filler size on mechanical, thermal and morphological properties of the composite was investigated. Compounding microfibrillated cotton with LDPE resulted in well-dispersed nanocomposites with no discoloration after 10 min of melt extrusion at 170 °C. At concentrations up to 10 % by weight, the composites showed increased modulus, increased tensile strength and a slight decrease in elongation to break. Further improvement in the dispersion and mechanical properties of the cotton-based fillers was realized by the use of LDPE powder instead of polymer pellets fed to the extruder. This research demonstrates the processing and applicability of the use of recycled cotton-based nano-sized fillers in melt-processing.  相似文献   

5.
Low-density polyethylene (LDPE) and linear low-density polyethylene (LLDPE) with different copper contents were prepared by melt mixing. The copper powder particle distributions were found to be relatively uniform at both low and high copper contents. There was cluster formation of copper particles at higher Cu contents, as well as the formation of percolation paths of copper in the PE matrices. The DSC results show that Cu content has little influence on the melting temperatures of LDPE and LLDPE in these composites. From melting enthalpy results it seems as if copper particles act as nucleating agents, giving rise to increased crystallinities of the polyethylene. The thermal stability of the LDPE filled with Cu powder is better than that for the unfilled polymer. The LLDPE composites show better stability only at lower Cu contents. Generally, the composites show poorer mechanical properties (except Young's modulus) compared to the unfilled polymers. The thermal and electrical conductivities of the composites were higher than that of the pure polyethylene matrix for both the LDPE and LLDPE. From these results the percolation concentration was determined as 18.7 vol.% copper for both polymers.  相似文献   

6.
Low‐density polyethylene (LDPE) filled with carbon black (CB) and carbon fiber (CF) composites were prepared by a conventional melt‐mixing method. The effects of a mixture of CB and CF on the positive‐temperature‐coefficient (PTC) effect and the negative‐temperature‐coefficient (NTC) effect, as well as the percolation threshold, were examined in detail. A synergy effect between CB and CF occurred, in that continuous conductive pathways formed within the CB/CF‐filled composite. The percolation threshold was moved to a reduced filler content with the addition of CF to an LDPE/CB composite. A model was proposed to explain the difference in the PTC behavior of composites containing CB and CF and composites containing only CB or CF. In addition, the NTC effect was weakened with a mixture of CB and CF, and a relatively small radiation dose was required to eliminate the NTC phenomenon in LDPE/CB/CF composites. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3094–3101, 2003  相似文献   

7.
It was shown that molded specimens of polymer composite materials can be obtained by an extrusion method by melt blending of Fluoroplast F-2 MB (modified poly(vinylidene difluoride)) and oxyfluoride glasses of the composition 3B2O3 (40SnF2–30SnO–30P2O5). The compositions of the observed phases of the composites were determined. Conclusions were made on the incompatibility of the components, their dispersion distribution, and strong adhesion interaction. Data on the nano level of the blending of the components were obtained. The elongation and Brinell hardness were measured in the composites with various (0–50 vol %) oxyfluoride contents. It was concluded that it is possible to produce composites based on fluorinated hydrocarbon and fluoroxide polymers.  相似文献   

8.
The purpose of the presented research was the investigation of the stability and differences of degradation of polyolefines during various recycling processes. In modeling the recycling process during melting, extrusion with a one-screw extruder was used. Recycling through selective dissolution was modulated by two different solvents (xylene and a definite mixture of n-alkanes). Materials used for the investigations were polypropylene (PP), low-density polyethylene (LDPE) and high-density polyethylene (HDPE) (Ziegeler-Natta technology with vanadium catalyst). Changes in the chemical structure of polymers were measured with infrared spectroscopy and differential scanning calorimetry (DSC). Flow properties were characterized by melt flow index, and mechanical characteristics by tension. Experimental results show that for PP and HDPE, utilizing all investigated recycling technologies, chain scission prevailed over branching. For the LDPE chain branching was obtained. By the same token, differences in crystallinity (and as follows, in molecular mass) between the same materials, recycled by extrusion and selective dissolution, was obtained. During selective dissolution changes of properties and morphology in dependence of the solvent used were observed with the trend being that the amount of the admixture of n-alkane used in this investigation was more considerable with regard to the amount of material destruction as compared to xylene. Any reduction of the mechanical properties of any of the investigated polymers as a result of the various methods used was comparable.  相似文献   

9.
An experimental study was conducted to investigate the rheological behaviour and extrudate swell of polyolefin blends based on two grades of low-density polyethylene (LDPE) and an isotactic polypropylene (i-PP). Blending was carried out on a twin-screw extruder “Brabender” at different composition ratios in the temperature range from 140 to 190°C. The LDPE/i-PP blends mixed with 0.5 wt.% blowing agent were extruded by means of “Brabender” extrusiograph at melt temperature of 200°C and different extrusion rates. The influence of composition content on the viscosity and extrudate swell was considered. The foam structure and morphology are discussed in terms of shear rate, molecular characteristics and composition content. The presence of layered structure was observed: an outer smectic layer and an inner partially crystalline layer. The thickness of smectic layer and size of spherulites were determined.  相似文献   

10.
Elongation viscosity is an important characterization of flow properties for polymer melts. In the present article, a new extensional viscosity equation for polymer melts was established by introducing a relaxation time equation based on the Cross model. The elongation viscosities of a low-density polyethylene (LDPE) melt at 200 °C and a metallocene linear low-density polyethylene (mLLDPE) melt at 130 °C were estimated using this equation; then, the calculations of the melt elongation viscosity were compared with the measured data from the extension experiments of the LDPE melt and the mLLDPE melt reported in the reference. Good agreement was found between the predictions and the measured data from the LDPE and mLLDPE melts. In addition, this equation is easy to use for characterization of elongation viscosity during single shaft elongation flow for polymer melts.  相似文献   

11.
The extensional rheological properties of low density polyethylene (LDPE)/linear low density polyethylene (LLDPE) blend melts were measured using a melt spinning technique under temperatures ranging from 160 to 200 °C and die extrusion velocities varying from 9 to 36 mm/s. The results showed that the melt elongation stress decreased with a rise of temperature while it increased with increasing extensional strain rate and the LDPE weight fraction. The dependence of the melt elongation viscosity on temperature roughly obeyed the Arrhenius equation, it increased with increasing extensional strain rate and the LDPE weight fraction when the extensional strain rate was lower than 0.5 s−1, and it reached a maximum when the extensional strain rate was about 0.5 s−1, which can be attributed to the stress hardening effect.  相似文献   

12.
The effects of the compatibilizer polyethylene grafted with glycidyl methacrylate (PE‐g‐GMA) on the properties of low‐density polyethylene (LDPE) (virgin and reprocessed)/corn starch blends were studied. LDPE (virgin and reprocessed)/corn starch blends containing 30, 40 and 50 wt% starch, with or without compatibilizer, were prepared by extrusion and characterized by the melt flow index (MFI), tensile test, dynamic mechanical analysis (DMTA) and light microscopy. The addition of starch to LDPE reduced the MFI values, the tensile strength and the elongation at break, whereas the modulus increased. The decreases in the MFI and tensile properties were most evident when 40 and 50 wt% starch were added. Blends containing 3 wt% PE‐g‐GMA had higher tensile strength values and lower MFI values than blends without compatibilizer. Light microscopy showed that increasing the starch content resulted in a continuous phase of starch. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
The microstructure and molecular orientation distribution over both the length and the thickness of microinjection‐molded linear low‐density polyethylene with a weld line were characterized as a function of processing parameters using small‐angle X‐ray scattering and wide‐angle X‐ray diffraction techniques. The weld line was introduced via recombination of two separated melt streams with an angle of 180° to each other in injection molding. The lamellar structure was found to be related to the mold temperature strongly but the injection velocity and the melt temperature slightly. Furthermore, the distributions of molecular orientation at different molding conditions and different positions in the cross section of molded samples were derived from Hermans equation. The degree of orientation of polymeric chains and the thickness of oriented layers decrease considerably with an increase of both mold temperature and melt temperature, which could be explained by the stress relaxation of sheared chains and the reduced melt viscosity, respectively. The level of molecular orientation was found to be lowest in the weld line when varying injection velocity, mold temperature, and melt temperature, thus providing an effective means to identify the position of weld line induced by flow obstacles during injection‐molding process. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1705–1715  相似文献   

14.
《先进技术聚合物》2018,29(2):982-988
Shape‐memory polymers are important smart materials with potential applications in smart textiles, medical devices, and sensors. We prepared trans‐1,4‐polyisoprene, low‐density polyethylene (LDPE), and high‐density polyethylene (HDPE) shape‐memory composites using a simple mechanical blend method. The mechanical, thermal, and shape‐memory properties of the composites were studied. Our results showed that the shape‐memory composites could memorize 3 temporary shapes, as revealed by the presence of broad melting transition peaks in the differential scanning calorimetry curves. In the trans‐1,4‐polyisoprene/LDPE/HDPE composites, the cross‐linked network and the crystallization of the LDPE and HDPE portions can serve as fixed domains, and all crystallizations can act as reversible domains. We proposed a schematic diagram to explain the vital role of the cross‐linked network and the crystallization in the shape‐memory process.  相似文献   

15.
The hierarchy structures and orientation behavior of high-density polyethylene (HDPE) molded by conventional injection molding (CIM) and gas-assisted injection molding (GAIM) were intensively examined by using scanning electronic microscopy (SEM) and 2D wide-angle X-ray diffraction (2D-WAXD). Results show that the spatial variation of crystals across the thickness of sample molded by CIM was characterized by a typical skin–core structure as a result of general shear-induced crystallization. Unusually, the crystalline morphologies of the parts prepared by GAIM, primarily due to the penetration of secondary high-compressed gas that was exerted on the polymer melt during gas injection, featured a richer and fascinating supermolecular structure. Besides, the oriented lamellar structure, general shish–kebab structure, and common spherulites existed in the skin, sub-skin, and gas channel region, respectively; a novel morphology of shish–kebab structure was seen in the sub-skin layer of the GAIM parts of HDPE. This special shish–kebab structure (recognized as “bending shish–kebab”) was neither parallel nor perpendicular to the flow direction but at an angle. Furthermore, there was a clear interface between the bending and the normal shish–kebab structures, which may be very significant for our understanding of the melt flow or polymer rheology under the coupling effect of multi-fluid flow and complex temperature profiles in the GAIM process. Based on experimental observations, a schematic illustration was proposed to interpret the formation mechanism of the bending shish–kebab structure during GAIM process.  相似文献   

16.
聚苯乙烯/聚乙烯的反应性挤出共混   总被引:5,自引:0,他引:5  
俞强  林明德 《应用化学》1999,16(3):53-0
多官能团单体;聚苯乙烯/聚乙烯的反应性挤出共混  相似文献   

17.
Conducting composite systems containing polyaniline layers produced on the surface and inside the pores of polyethylene support have been prepared. Microporous polyethylene films were obtained by melt extrusion with subsequent annealing, uniaxial extension, and thermal fixation. Polyaniline layers were formed by in-situ polymerization of aniline onto polyethylene porous support placed into the aqueous reaction mixture. Structural and chemical transformations upon heating of these systems in air in free state and in vacuum under load have been investigated by thermo-mechanical tests, IR spectrometry, and electron microscopy. Changes in mechanical properties of composites after heating have been analyzed. Composite systems have been found to demonstrate a considerably lower shrinkage upon heating than microporous polyethylene substrates. It has been discovered that the composites preserve mechanical integrity on heating up to temperatures much higher than the polyethylene melting point. It is concluded that thermo-mechanical behaviour of the composites is determined by the space-continuous phase of polyaniline on the surface and in the bulk of polyethylene support.  相似文献   

18.
Microporous and highly hydrophobic low‐density polyethylene (LDPE) hollow fiber membranes were successfully prepared via a solvent‐free method, combining melt‐extrusion, and salt‐leaching techniques. NaCl particles with particle size of 5–10 µm were mixed with LDPE pellets to produce a blend of 35, 40, 50, 60, 65 and 68 wt% of salt. A microporous structure was produced by leaching the salt particles from the hollow fiber matrix via immersion in water at 60°C. The fabricated membranes were then characterized in terms of morphology, porosity and pore size distribution, surface roughness, and hydrophobicity, as well as mechanical properties. The remarkable increase in the water contact angles from 98° for LDPE hollow fibers fabricated without the addition of salt (blank sample) to 130° for membranes fabricated with initial salt content of 68 wt% is mainly attributed to the rough surface structure, comprising a large number of micropapillas produced by removing the imbedded salt crystals. The increase in surface roughness and porosity of hollow fiber membranes with increasing initial salt content was confirmed by scanning electron microscope and atomic force microscopy. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Three types of low‐density polyethylene materials were investigated with respect to the influence of the molecular architecture on the mechanical and use properties of blown films. The materials were a branched polyethylene synthesized by free‐radical polymerization under high‐pressure (HP‐LDPE), a linear ethylene–hexene copolymer (ZN‐LLDPE) produced by low‐pressure Ziegler–Natta catalysis, and an ethylene–hexene copolymer (M‐LLDPE) from metallocene catalysis. The extrusion and blowing conditions were identical for the three materials, with a take‐up ratio of 12 and a blow‐up ratio of 2.5. The blown films displayed a decreasing puncture resistance in the order M‐LLDPE, ZN‐LLDPE, and HP‐LDPE. In parallel, the tear resistance of the films became increasingly unbalanced in the same order of the polymers. The morphological study showed an increased anisotropy of the films in the same polymer order, the crystalline lamellae being increasingly oriented normal to the take‐up direction. This texturing caused a detrimental effect on the mechanical properties of the films, notably increasing the capacity for crack propagation. The phenomenon was ascribed to the kinetics of chain relaxation in the melt that governed the ability of the chains to recover an isotropic state from the flow‐induced stretching before crystallization. The puncture resistance was examined in terms of both texture and strain‐hardening capabilities. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 327–340, 2003  相似文献   

20.
Blown films based on low density polyethylene (LDPE) organoclay nanocomposites (NCs) were obtained by melt extrusion followed by film blowing, using a zinc ionomer of poly(ethylene-co-methacrylic acid) (Pema-Zn) as a compatibilizer. The parameters studied were the compatibilizer and the montmorillonite (MMT) contents that ranged from 0 to 20% and from 0 to 5%, respectively. The presence of clay hindered Pema-Zn crystallization indicating the existence of interaction between the Pema-Zn and the clay. Analysis of the nanostructure showed that the MMT was found inside microscopic domains of Pema-Zn distributed throughout the LDPE matrix. The addition of Pema-Zn improved the dispersion of the clay in LDPE films resulting in synergistic improvements in the mechanical properties. These improvements occur both in the machine and transverse directions. Thus, the presence of Pema-Zn is a determining factor in biaxiality and can clearly be attributed to the bidimensional laminar structure of clays such as MMT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号