首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 701 毫秒
1.
The behavior of Co−MgO catalysts in the reaction of CO disproportionation was studied in the temperature range up to 800°C. Two temperature regions that differ by the morphology of graphite produced (“egg-shells” or nanotubes) were detected. The experimental data obtained were analyzed in terms of the phase equilibria “amorphous carbon”—“carbon solution in metallic Co” and “graphite”— “carbon solution in metallic Co”. Under certain assumptions, the Co° particles are considered to dissolve amorphous carbon under the reaction conditions and transform to oversaturated fluidized carbon-cobalt solution, these fluidized particles being responsible for the formation of carbon nanotubes.  相似文献   

2.
Enhancement of thermal properties of epoxy resins was achieved by incorporation of polybenzimidazole (PBI) fibermats filled with carbon nanomaterials, prepared by the solution electrospinning technique. Different type of carbon nanostructures (carbon nanotubes, graphite flakes, graphene nanoplatelets and carbon black) were compared as fillers in polybenzimidazole fibers. The carbon-PBI-fibermats showed remarkable thermal transport properties and therefore, they were studied as thermal reinforcement material for epoxy composites. Mechanical and thermal properties of produced composites were evaluated and the effectiveness of different types of carbon fillers examined. Results showed that the produced carbon filled fibermats can be used effectively as a thermal reinforcing material in epoxy resins, offering several advantages.  相似文献   

3.
The capability of sorbing hydrogen was studied for the magnesium alloys and related composites. The microstructures of the Mg-Ni binary eutectic alloys and Mg-La-Ni and Mg-Mm-Ni ternary eutectic alloys were studied. Both the initial alloys and alloys modified by the method of equal channel angular pressing were used as objects of the study. Features of interaction of the alloys with hydrogen were revealed. Sorption of hydrogen by the metal hydride composites based on alloys and ??pseudoalloys,?? viz., alloys obtained by sintering of mechanochemically treated highly dispersed powders formed by the hydride dispersion of metallic phases, was studied. Metal??carbon composites based on highly dispersed magnesium alloys or pseudoalloys and carbon nanostructures were formed, and the absorption of hydrogen by these composites was examined.  相似文献   

4.
The blend of nanotechnology and material science is often beyond the scope of undergraduate laboratories. Through undergraduate research, graphite-intercalated compounds have been incorporated in the production of carbon-based nanostructures. Based on this work a series of exploratory exercises were designed for the undergraduate physical chemistry laboratory emphasizing nanostructure material science. This rapidly expanding area of science and technology can be introduced at an undergraduate level using a high temperature oven to produce nanostructure samples that are analyzed by Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy at research university laboratories, infrared spectroscopy, and a bomb calorimeter. In these experiments we use samples of pure graphite, fluorinated graphite, and lanthanum oxide to induce the formation of nanostructures. An overview of fullerenes, nanotubes, boron nitride and Si nanostructures, other carbon forms, graphite-intercalated compounds, and the storage of hydrogen in nanotubes are provided in an appendix. Several extensions of the laboratory are proposed.  相似文献   

5.
An electrochemical method for the preparation of nanostructured composites based on multiwalled carbon nanotubes and chromium oxide is proposed. The method involves electrodeposition of chromium oxides from a solution of hexavalent chromium oxide in sulfuric acid on carbon nanotubes. By varying the electrolysis conditions one can obtain deposited—catalyst particles of different size and vary the amount of catalyst. Oxygen electrodes have been made from the materials obtained for fuel cells with alkaline electrolyte, which showed good electrocatalytic properties.  相似文献   

6.
7.
The present state of research on the production and modeling of nanostructures based on titanium carbide-a typical representative of an extensive class of carbides of d-and f-metals-is reviewed. Methods for the synthesis of various Ti-C nanostructures (molecular clusters, nanocrystallites, nanospheres, nanofibers, nanowires) are examined, and their morphology, atomic structure, and known physicochemical characteristics are described. Theoretical models of the atomic structure and properties of new types of nanostructures in the titanium-carbon system (endo-and exohedral titanofullerenes, “hybrid” structures based on carbon nanotubes, the so-called peapods, nanocables, and a number of others) and the prospects for their application as components of nanoceramics, hydrogen accumulators, materials for spintronics, etc. are discussed. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 43, No. 1, pp. 1–23, January–February, 2007.  相似文献   

8.
Multi-wall carbon nanotubes were coated with a conducting polymer, polyaniline phosphotungstate. Such composite structures have mixed electronic and proton conductivity, high surface area and porosity. These materials were decorated with catalytically-active noble metals — Pt, Pd, and Rh. Metal nanoparticles were uniformly distributed in the polymer matrix. Such ternary composites can be considered as electrode materials in sensors, electrolysers, supercapacitors, and especially in low-temperature fuel cells with a proton-conducting polymer membrane.  相似文献   

9.
The incorporation of carbon fillers can improve the thermal and electrical conductivities of polymer composites but will also have a significant effect on the flexural and tensile behavior. In this paper, two types of carbon fillers were added to polypropylene - carbon nanotubes and synthetic graphite. The influences of these filler materials on the tensile, flexural and fracture toughness characteristics were measured and the electrical conductivity of composites was also investigated. It was observed that the fillers lead to a remarkable increase in the flexural and tensile modulus of polypropylene composites. The maximum flexural and tensile strengths slightly increased with the addition of graphite, however, they were significantly increased in the case of carbon nanotubes because MWCNTs possess exceptional stiffness and strength and their length to diameter ratio is extremely high when compared with graphite. Electrical conductivity of polypropylene composites was evaluated. Noteworthy, composites based on synthetic graphite show a percolation process at one order of magnitude concentration higher than MWCNT filled polypropylene. Fracture toughness results open a wide range of applications for PP-MWCNT composites. Several prediction models were inspected in this research and it was concluded that inverse rule of mixtures model showed the most accurate predictions of the tensile modulus for composites made of polypropylene.  相似文献   

10.
The subject of this study is production of carbon nanotubes (CNTs) using an original procedure of reduction of lithium molten salts onto graphite cathode; their structural characterization and application as support material for electrocatalysts aimed for hydrogen evolution. As-produced CNTs were characterized by means of scanning and transmission electron microscopy (SEM and TEM), Raman spectroscopy, and thermogravimetric and differential thermal analysis (DTA). SEM and TEM images have shown that nanotubes are mostly of curved shape with length of 1–20 μm and diameter of 20–40 nm. Raman peaks indicate that the crystallinity of produced nanotubes is rather low. The obtained results suggest that formed product contains up to 80 % multiwalled carbon nanotubes (MWCNTs), while the rest being non-reacted graphite and fullerenes. DTA curves show that combustion process of the nanotubes takes place in two stages, i.e., at 450 and 720 °C. At the lower temperature, combustion of MWCNTs occurs, while at higher one, fullerenes and non-reacted graphite particles burn. As-produced MWCNTs were used as electrocatalyst’s support materials and their performance was compared with that of traditional carbon support material Vulcan XC-72. MWNTs have shown almost twice higher real surface area, and electrocatalyst deposited on them showed better catalytic activity than corresponding one deposited on Vulcan XC-72.  相似文献   

11.
Catalytic asymmetric organic transformations performed in aqueous media with immobilized chiral palladium and rhodium complexes are reviewed. Amphiphilic polystyrene-poly(ethylene glycol) graft co-polymer (PS-PEG) resin-supported MOP, boxax, BINAP, and an imidazoindole phosphine ligands were designed and prepared with a view to use them in asymmetric catalysis under aqueous and heterogeneous conditions. Several carbon–hydrogen, carbon–carbon, carbon–nitrogen, and carbon–oxygen bond forming reactions were achieved in water with high stereoselectivity and recyclability to meet the green chemical requirements.  相似文献   

12.
Thermal conductivity of exfoliated graphite nanocomposites   总被引:1,自引:0,他引:1  
Since the late 1990’s, research has been reported where intercalated, expanded, and/or exfoliated graphite nanoflakes could also be used as reinforcements in polymer systems. The key point to utilizing graphite as a platelet nanoreinforcement is in the ability to exfoliate graphite using Graphite Intercalated Compounds (GICs). Natural graphite is still abundant and its cost is quite low compared to the other nano–size carbon materials, the cost of producing graphite nanoplatelets is expected to be ~$5/lb. This is significantly less expensive than single wall nanotubes (SWNT) (>$45000/lb) or vapor grown carbon fiber (VGCF) ($40–50/lb), yet the mechanical, electrical, and thermal properties of crystalline graphite flakes are comparable to those of SWNT and VGCF. The use of exfoliated graphite flakes (xGnP) opens up many new applications where electromagnetic shielding, high thermal conductivity, gas barrier resistance or low flammability are required. A special thermal treatment was developed to exfoliate graphite flakes for the production of nylon and high density polypropylene nanocomposites. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to assess the degree of exfoliation of the graphite platelets and the morphology of the nanocomposites. The thermal conductivity of these composites was investigated by three different methods, namely, by DSC, modified hot wire, and halogen flash lamp methods. The addition of small amounts of exfoliated graphite flakes showed a marked improvement in thermal and electrical conductivity of the composites.  相似文献   

13.
The possibility of using new carbon–carbon composites as supports for a copper catalyst for ethanol dehydrogenation was demonstrated. The composites, which represented carbon nanostructures (single-walled carbon nanotubes or carbon nanofibers) attached to the surface of carbon microfibers, were prepared by essentially different procedures. Copper catalysts deposited on these supports exhibited different activity in the ethanol conversion, which is associated with the distribution and size of copper particles.  相似文献   

14.
The physisorption and chemisorption of hydrogen in BN nanotubes, investigated by density functional theory (DFT), were compared with carbon nanotubes. The physisorption of H2 on BN nanotubes is less favorable energetically than on carbon nanotubes; BN nanotubes cannot adsorb hydrogen molecules effectively in this manner. Chemisorption of H2 molecules on pristine BN nanotubes is endothermic. Consequently, perfect BN nanotubes are not good candidates for hydrogen storage by either mechanism. Other strategies must be utilized if BN nanotubes are to be employed as hydrogen storage media such as utilizing them as supporting media for hydrogen-absorbing metal nanoclusters.  相似文献   

15.
Multi-walled carbon nanotubes synthesized by means of arc evaporation of graphite were used to prepare composites with a heat-resistant binder based on cyanoether. To increase the homogeneity of distribution of nanotubes in the polymer matrix, the carbon material was cleaned of graphite particles and amorphous carbon with a potassium permanganate solution in concentrated sulfuric acid. By means of X-ray photoelectron spectroscopy, it was shown that the proposed purification procedure leads to the grafting of oxygen-containing groups to the surface of carbon nanotubes. By means of differential scanning calorimetry, it was revealed that the oxide overcoat on the nanotube surface exerts an influence on the character of binder polymerization. The mechanical properties of a carbon-reinforced plastic with different nanotubes contents were measured. It was shown that the admixture of 0.25–0.50% carbon nanotubes improves the mechanical characteristics of carbon-reinforced plastics by 10–20%.  相似文献   

16.
This communication describes a new and relatively general electrochemical approach to the deposition of transition metal hydroxide/oxide nanostructures onto multi-walled carbon nanotubes (MWNTs) based on the precipitation of metal hydroxide/oxide nanostructures onto MWNTs by increasing the local pH values at the electrode/electrolyte interface induced by the proton-consuming electrochemical reduction of hydrogen peroxide (H2O2). The results obtained with cyclic voltammetry, scanning electron microscopy, and X-ray photoelectron spectroscopy of the synthetic nanocomposites substantially suggest the deposition of the metal hydroxides/oxides onto MWNTs induced by the electrochemical reduction of H2O2. This study essentially offers a facile but effective and relatively general electrochemical approach to the synthesis of the nanocomposites consisting of metal hydroxides/oxides and MWNTs.  相似文献   

17.
Clustering of Ti on a C60 surface and its effect on hydrogen storage   总被引:1,自引:0,他引:1  
Recent efforts in finding materials suitable for storing hydrogen with large gravimetric density have focused attention on carbon-based nanostructures. Unfortunately, pure carbon nanotubes and fullerenes are unsuitable as hydrogen storage materials because of the weak bonding of the hydrogen molecules to the carbon frame. It has been shown very recently that coating of carbon nanostructures with isolated transition metal atoms such as Sc and Ti can increase the binding energy of hydrogen and lead to high storage capacity (up to 8 wt % hydrogen, which is 1.6 times the U.S. Department of Energy target set for 2005). This prediction has led to a great deal of excitement in the fuel cell community [see The Fuel Cell Review, http://fcr.iop.org/articles/features/2/7/4]. However, this prediction depends on the assumption that the metal atoms coated on the fullerene surface will remain isolated. Using first-principles calculations based on density functional theory, we show that Ti atoms would prefer to cluster on the C60 surface, which can significantly alter the nature of hydrogen bonding, thus affecting not only the amount of stored hydrogen but also their thermodynamics and kinetics.  相似文献   

18.
In our experimental work on carbon nanotubes synthesis, the influence of pre-treatment and reaction temperature conditions over Fe catalyst loaded on low-cost activated carbon (AC) in the catalytic chemical vapor deposition of methane was studied. Catalyst with the metal concentration of 5 mass % calcined at 350°C and reduced at 450°C was effective in CH4 decomposition giving 98 % conversions. TEM images showed that thin multi-walled carbon nanotubes (MWNTs) with the average internal diameter of ∼ 8 nm and the wall thickness of ∼ 2.5 nm were obtained over unreduced Fe/AC catalyst at the reaction temperature of 850°C. On the other hand, broader filamentous nanostructures with the diameter of ∼ 22 nm and the wall thickness of ∼ 3.72 nm were observed over reduced catalyst.  相似文献   

19.
Pyrolytic decomposition of acetylene over the surface of nickel-, cobalt- and iron-containing ordered mesoporous MCM-41 silicas has been studied. Catalytically active matrices have been prepared by chemisorption of volatile metal acetylacetonate complexes on the silica surface. Reduction of the supported metal-containing compounds was carried out in hydrogen or acetylene atmosphere. Acetylene is used not only as a source of carbon in synthesis of the nanostructures but also as a reagent capable of reducing metal ions in the surface chemical compounds. Formation of carbon nanotubes and nanofibers is shown to depend on the pyrolysis conditions.  相似文献   

20.
基于碳纳米管的超级电容器研究进展   总被引:2,自引:1,他引:1  
综述了基于碳纳米管及其复合材料作超级电容器的电极材料的研究现状,通过对碳纳米管的改性或与其它材料复合,能有效地提高电容器的电容特性。总结了近几年来在开发超级电容器电极材料领域中对碳纳米管的活化和提高碳纳米管的分散性技术、碳纳米管与过渡金属氧化物复合材料、碳纳米管与导电聚合物复合材料以及碳纳米管与石墨烯复合材料研究的进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号