首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We construct a right-invariant differential calculus on the quantum supergroupGL q (1/1) and we show that the quantum Lie algebra generators satisfy the undeformed Lie superalgebra. The deformation becomes apparent when one studies the comultiplication for these generators. We bring the algebra into the standard Drinfeld-Jimbo form by performing a suitable change of variables, and we check the consistency of the map with the induced comultiplication.  相似文献   

2.
For a spectrum-generating algebra of classical observables, it is proven that the phase space dynamics simplifies to a Hamiltonian system on submanifolds of the algebra's dual. These submanifolds are coadjoint orbits if the algebra arises from a symplectic group action. If the Hamiltonian splits into the sum of a function of the algebra generators plus a commuting part, then the dynamics transfers to the dual space and an explicit formula is given for the flow vector field on the coadjoint orbits. A unique feature of the presentation is that all constructions are at the Lie algebra level.  相似文献   

3.
The generators ofq-boson algebra are expressed in terms of those of boson algebra, and the relations among the representations of a quantum algebra onq-Fock space, on Fock space, and on coherent state space are discussed in a general way. Two examples are also given to present concrete physical spaces with quantum algebra symmetry. Finally, a new homomorphic mapping from a Lie algebra to boson algebra is presented.This work is supported by the National Foundation of Natural Science of China.  相似文献   

4.
Any deformation of a Weyl or Clifford algebra can be realized through a change of generators in the undeformed algebra. Here we briefly describe and motivate our systematic procedure for constructing all such changes of generators for those particular deformations where the original algebra is covariant under some Lie group and the deformed algebra is covariant under the corresponding quantum group.  相似文献   

5.
Some ingredients of the BRST construction for quantum Lie algebras are applied to a wider class of quadratic algebras of constraints. We build the BRST charge for a quantum Lie algebra with three generators and ghost-anti-ghosts commuting with constraints. We consider a one-parametric family of quadratic algebras with three generators and show that the BRST charge acquires the conventional form after a redefinition of ghosts. The modified ghosts form a quadratic algebra. The family possesses a nonlinear involution, which implies the existence of two independent BRST charges for each algebra in the family. These BRST charges anticommute and form a double BRST complex.  相似文献   

6.
We describe Hopf algebras which are central extensions of quantum current groups. For a special value of the central charge, we describe Casimir elements in these algebras. New types of generators for quantum current algebra and its central extension for quantum simple Lie groups, are obtained. The application of our construction to the elliptic case is also discussed.  相似文献   

7.
Starting from any representation of the Lie algebra on the finite dimensional vector space V we can construct the representation on the space Aut(V). These representations are of the type of ad. That is one of the reasons, why it is important to study the adjoint representation of the Lie algebra on the universal enveloping algebra U(). A similar situation is for the quantum groups Uq(). In this paper, we study the adjoint representation for the simplest quantum algebra Uq(sl(2)) in the case that q is not a root of unity.  相似文献   

8.
The paper deals with non-commutative differential geometry. The general theory of differential calculus on quantum groups is developed. Bicovariant bimodules as objects analogous to tensor bundles over Lie groups are studied. Tensor algebra and external algebra constructions are described. It is shown that any bicovariant first order differential calculus admits a natural lifting to the external algebra, so the external derivative of higher order differential forms is well defined and obeys the usual properties. The proper form of the Cartan Maurer formula is found. The vector space dual to the space of left-invariant differential forms is endowed with a bilinear operation playing the role of the Lie bracket (commutator). Generalized antisymmetry relation and Jacobi identity are proved.  相似文献   

9.
We establish a noncommutative analogue of the first fundamental theorem of classical invariant theory. For each quantum group associated with a classical Lie algebra, we construct a noncommutative associative algebra whose underlying vector space forms a module for the quantum group and whose algebraic structure is preserved by the quantum group action. The subspace of invariants is shown to form a subalgebra, which is finitely generated. We determine generators of this subalgebra of invariants and determine their commutation relations. In each case considered, the noncommutative modules we construct are flat deformations of their classical commutative analogues. Our results are therefore noncommutative generalisations of the first fundamental theorem of classical invariant theory, which follows from our results by taking the limit as q → 1. Our method similarly leads to a definition of quantum spheres, which is a noncommutative generalisation of the classical case with orthogonal quantum group symmetry.  相似文献   

10.
Conventional Lie algebra contraction is envisaged as a particular case where the correspondent vector fields defining infinitesimal generators of the transformations are vector fields over a differentiable manifold. More general vector fields over tangent space are considered as infinitesimal generators of contact transformations building up a Lie algebra. A new contraction procedure is defined over such vector fields by means of a Taylor expansion. The most striking feature is that the global structure of Lie algebra remains unchanged, while the individual structure of generators is changed.Research supported in part by the National Science Foundation under Grant No. MPS75-20427.On leave of absence from Departmento de Fisica Matematica, Universidad de Salamanca, Spain.  相似文献   

11.
For a quantum Lie algebra Γ, let Γ^ be its exterior extension (the algebra Γ^ is canonically defined). We introduce a differential on the exterior extension algebra Γ^ which provides the structure of a complex on Γ^. In the situation when Γ is a usual Lie algebra, this complex coincides with the “standard complex.” The differential is realized as a commutator with a (BRST) operator Q in a larger algebra Γ^[Ω], with extra generators canonically conjugated to the exterior generators of Γ^. A recurrent relation which uniquely defines the operator Q is given.  相似文献   

12.
A Hopf algebra structure of the extended three-dimensional quantum space is defined. A differential algebra of the extended three-dimensional quantum space is introduced and its Hopf algebra structure is explicitly given. The (undeformed) Lie algebra of three dimensional quantum space is obtained.  相似文献   

13.
We study the quantum model on symmetric space SU(3)/SU(2). By using the Inonu-Wigner contraction to Lie algebra su(3), we arrive at a special case of three-body Sutherland model. It has shown that by calculating conservative quantities of this model, it has Poincare Lie algebra, too.  相似文献   

14.
We apply BRST method to the self-dual Chern-Simons gauge theory with matter fields and the generators of symmetries of the system from an elegant Lie algebra structure under the operation of Poisson bracket. We discuss four different cases: abelian, nonabelian, relativistic, and nonrelativistic situations and extend the system to the whole phase space including ghost fields. In addition, we obtain the BRST charge of the field system and check its nilpotence of the BRST transformation which plays an important role such as in topological quantum field theory and string theory.  相似文献   

15.
We construct a discrete quantum version of the Drinfeld–Sokolov correspondence for the sine-Gordon system. The classical version of this correspondence is a birational Poisson morphism between the phase space of the discrete sine-Gordon system and a Poisson homogeneous space. Under this correspondence, the commuting higher mKdV vector fields correspond to the action of an Abelian Lie algebra. We quantize this picture (1) by quantizing this Poisson homogeneous space, together with the action of the Abelian Lie algebra, (2) by quantizing the sine-Gordon phase space, (3) by computing the quantum analogues of the integrals of motion generating the mKdV vector fields, and (4) by constructing an algebra morphism taking one commuting family of derivations to the other one. Received: 3 July 2001 / Accepted: 14 December 2001  相似文献   

16.
We present a kind of new coherent states associated with the Lie superalgebra SU(2/1), and discuss their properties in detail. We also evaluate the matrix elements of the SU(2/1) generators in the coherent state representations and obtain differential realizations of the SU(2/1) algebra in the coherent state space. The differential realizations may be useful for the study of the quasi-exactly solvable problems in the quantum mechanics.  相似文献   

17.
A quantum algebra method for deducing the symmetries of discrete equations on uniform lattices is proposed. In principle, such a procedure can be applied to discretizations in a single coordinate (space or time) and the symmetries obtained in this way are indeed differential-difference operators. Firstly, the method is illustrated on two known examples that have been also analysed from the usual Lie symmetry approach: a uniform space lattice discretization of the (1+1) free heat-Schrödinger equation associated to a quantum Schrödinger algebra, and a discrete space (1+1) wave equation provided by a quantumso(2, 2) algebra. Furthermore, we construct a discrete space (2+1) wave equation from a new quantumso(3, 2) algebra, to show that this method is useful in higher dimensions. Time discretizations are also commented.  相似文献   

18.
We discuss the one-dimensional, time-dependent general quadratic Hamiltonian and the bi-dimensional charged particle in time-dependent electromagnetic fields through the Lie algebraic approach. Such method consists in finding a set of generators that form a closed Lie algebra in terms of which it is possible to express a quantum Hamiltonian and therefore the evolution operator. The evolution operator is then the starting point to obtain the propagator as well as the explicit form of the Heisenberg picture position and momentum operators. First, the set of generators forming a closed Lie algebra is identified for the general quadratic Hamiltonian. This algebra is later extended to study the Hamiltonian of a charged particle in electromagnetic fields exploiting the similarities between the terms of these two Hamiltonians. These results are applied to the solution of five different examples: the linear potential which is used to introduce the Lie algebraic method, a radio frequency ion trap, a Kanai–Caldirola-like forced harmonic oscillator, a charged particle in a time dependent magnetic field, and a charged particle in constant magnetic field and oscillating electric field. In particular we present exact analytical expressions that are fitting for the study of a rotating quadrupole field ion trap and magneto-transport in two-dimensional semiconductor heterostructures illuminated by microwave radiation. In these examples we show that this powerful method is suitable to treat quadratic Hamiltonians with time dependent coefficients quite efficiently yielding closed analytical expressions for the propagator and the Heisenberg picture position and momentum operators.  相似文献   

19.
Quantum Lie algebras are generalizations of Lie algebras which have the quantum parameter h built into their structure. They have been defined concretely as certain submodules of the quantized enveloping algebras . On them the quantum Lie product is given by the quantum adjoint action. Here we define for any finite-dimensional simple complex Lie algebra an abstract quantum Lie algebra independent of any concrete realization. Its h-dependent structure constants are given in terms of inverse quantum Clebsch-Gordan coefficients. We then show that all concrete quantum Lie algebras are isomorphic to an abstract quantum Lie algebra . In this way we prove two important properties of quantum Lie algebras: 1) all quantum Lie algebras associated to the same are isomorphic, 2) the quantum Lie product of any is q-antisymmetric. We also describe a construction of which establishes their existence. Received: 23 May 1996 / Accepted: 17 October 1996  相似文献   

20.
We discuss quantum deformations of Lie algebra as described by the noncoassociative modification of its coalgebra structure. We consider for simplicity the quantum D = 1 Galilei algebra with four generators: energy H, boost B, momentum P and central generator M (mass generator). We describe the nonprimitive coproducts for H and B and show that their noncocommutative and noncoassociative structure is determined by the two-body interaction terms. Further we consider the case of physical Galilei symmetry in three dimensions. Finally we discuss the noninteraction theorem for manifestly covariant two-body systems in the framework of quantum deformations of D = 4 Poincaré algebra and a possible way out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号