首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preparation of radial gradient refractive index (r-GRIN) glass rods has been undertaken by a sol-gel process using metal alkoxides. Two binary systems, Si(OCH3)4---Ge(OC2H5)4 and Si(OCH3)4−Ti(O−n-C4H9)4 have been investigated. It has been shown that immersion of rod-shaped wet gels in neutral or acidic water gives rise to leaching of the dopants (germanium and titanium components). Since this leaching is controlled predominantly by diffusion, the dopants remaining in the gels are expected to form concentration gradients. Optical measurements of the glass rods obtained after drying and sintering of the leached gels have shown that the concentration gradients are retained in the glass rods and they give r-GRIN profiles.  相似文献   

2.
A. Mekki  G. D. Khattak  L. E. Wenger   《Journal of Non》2003,330(1-3):156-167
X-ray photoelectron spectroscopy (XPS) has been used to obtain structural information on the xPbO · (1−x)V2O5 glass system where x=0.22, 0.35, 0.43, and 0.54. The binding energies from the Pb 4f7/2 and Pb 4f5/2 core levels decrease with increasing PbO content while the full-width at half-maximum of these peaks increase. The O 1s spectra show an asymmetry for samples having composition x<0.5, which results from oxygen atoms in the V–O–V configuration (bridging oxygens) and from oxygen atoms in the V–O–Pb and Pb–O–Pb configurations (non-bridging oxygens). The number of non-bridging oxygens was found to increase from 81% to 92% with increasing PbO content. For x=0.54, the O 1s spectrum was symmetric indicating that all three oxygen configurations have essentially the same binding energy. This behavior in addition to the decreasing binding energies of the Pb 4f levels with increasing PbO content suggest that the Pb–O bonds are becoming more covalent in nature and that eventually PbO changed its role from a glass modifier to a glass former for x>0.5. The asymmetric V 2p3/2 peaks for the x<0.4 glasses indicate the presence of a small concentration of V4+ ions in addition to V5+ ions, while the symmetric V 2p3/2 peaks for the more concentrated PbO vanadate glasses indicate only V5+ being present. The concentration of V4+ ions (0–4%) from the XPS data is consistent with determinations from magnetic susceptibility measurements on the same glass samples. In addition to the paramagnetic contribution (Curie–Weiss temperature-dependent behavior) from the V4+ ions, the susceptibility for these oxide glasses consisted of a positive, constant contribution arising from the temperature-independent paramagnetic V2O5 exceeding the diamagnetism from the core ions.  相似文献   

3.
《Journal of Non》2001,290(2-3):224-230
Infrared (IR) reflectivity and Raman scattering spectra of LaBSiO5 glass and glass–crystal composites were studied in the temperature range 25–260 °C. Using an analogy with the LaBGeO5 crystal it was possible to assign the main spectral features of the LaBSiO5 glass and glass–crystal composites. The BO4 chain arrangement and the bending vibrations of SiO4 are influenced by the loss of the long-range order in the glass whereas the stretching vibrations of the SiO4 groups are practically unaffected. The structural disorder in LaBSiO5 crystallites is caused by rotation of BO4 tetrahedra.  相似文献   

4.
A study of the structure and bonding configuration of the bioactive glasses in the system Na2O–CaO–P2O5–SiO2 by Fourier transform Raman spectroscopy is presented. The assignment of the Raman lines, the changes in the Si–O–Si bond environment and the identification of the non-bridging silicon–oxygen groups (Si–O–NBO) for a wide range of silicate glasses are discussed. The frequency shifting and intensity variations of the Raman lines as a function of the bioactive glass composition are attributed to a decrease of the local symmetry originated by the addition of alkali and alkali earth oxides to the vitreous silica network. Correlation plots for the quantification of the Si–O–NBO groups as a function of the glass composition are also presented. These Raman analyses contribute to a better knowledge of the structural role of the network modifiers in the bioactive glasses and, as a consequence, improve the understanding of the bioactive process and the chemical routes of the CaP layer formation when exposed body fluids.  相似文献   

5.
Thermally stimulated luminescence (TSL) and infrared (IR) spectroscopy were measured in plasma grown Si1−xGexO2 (x=0, 0.08, 0.15, 0.25, 0.5) with different thicknesses (12–40 nm). A comparison with the TSL properties of thermally grown SiO2 and GeO2 was also performed. A main IR absorption structure was detected, due to the superposition of the peaks related to the asymmetric O stretching modes of (i) Si–O–Si (at ≈1060 cm−1) and (ii) Si–O–Ge (at 1001 cm−1). Another peak at ≈860 cm−1 was observed only for Ge concentrations, x>0.15, corresponding to the asymmetric O stretching mode in Ge–O–Ge bonds. A TSL peak was observed at 70°C, and a smaller structure at around 200°C. The 70°C peak was more intense in all Ge rich layers than in plasma grown SiO2. Based on the thickness dependence of the signal intensity we propose that at Ge concentrations 0.25x0.5 TSL active defects are localised at interfacial regions (oxide/semiconductor, Ge poor/Ge rich internal interface, oxide external surface/atmosphere). Based on similarities between TSL glow curves in plasma grown Si1−xGexO2, thermally grown GeO2 and SiO2 we propose that oxygen vacancy related defects are trapping states in Si1−xGexO2 and GeO2.  相似文献   

6.
Three n–p–n Si/SiGe/Si heterostructures with different layer thickness and doping concentration have been grown by a home-made gas source molecular-beam epitaxy (GSMBE) system using phosphine (PH3) and diborane (B2H6) as n-and p-type in situ doping sources, respectively. Heterojunction bipolar transistors (HBTs) have been fabricated using these structures and a current gain of 40 at 300 K and 62 at 77 K have been obtained. The influence of thickness and doping concentration of the deposited layers on the current gain of the HBTs is discussed.  相似文献   

7.
《Journal of Non》2003,330(1-3):128-141
The electrical and dielectric properties for three series of MoO3–Fe2O3–P2O5 and one series of SrO–Fe2O3–P2O5 glasses were measured by impedance spectroscopy in the frequency range from 0.01 Hz to 3 MHz and over the temperature range from 303 to 473 K. It was shown in Part I that the MoO3 is incorporated into phosphate network and the structure/properties are strongly influenced by the overall O/P ratio. The Fe2O3 content and Fe(II)/Fetot ratio in these glasses have significant effects on the electrical conductivity and dielectric permittivity. With decreasing Fe2O3 content in MoO3–Fe2O3–P2O5 glasses with O/P at 3.5 the dc conductivity, σdc(ω) decreases for two orders of magnitude, which indicates that the conductivity for these glasses depends on Fe2O3 and is independent of the MoO3 content. Also, the dielectric properties such as (ω), (ω) and σac(ω) and their variation with frequency and temperature indicates a decrease in relaxation intensity with increase in the concentration of MoO3. On the other hand, the dc conductivity for MoO3–Fe2O3–P2O5 glasses with O/P > 3.5 increases with the substitution of MoO3 which has been explained by an increase in the number of non-bridging oxygens and formation of Fe–O–P bonds that are responsible for formation of small polarons. The increase in the dielectric permittivity, (ω) with increasing MoO3 content is attributed to the increase in the deformation of glass network with increasing bonding defects. For SrO–Fe2O3–P2O5 glasses the conductivity and dielectric permittivity remained constant with increasing SrO.  相似文献   

8.
Adding Nb to Zr–Cu–Al amorphous alloys induces the primary transformation occurring on heating. Nanocrystalline-amorphous composites were produced by annealing Zr70−yNbxCu30−xAly (X=5–7.5 and Y=8–12 at.%) metallic glasses. Their structures, after completing the primary transformation by annealing, were found to consist of fine crystals with a scale less than 15 nm dispersed homogeneously in an amorphous matrix. The nanostructured alloys show increased tensile strength and hardness with good bending ductility at a volume fraction of nanoparticles less than 50%. We suggest that the stronger attractive interaction between Zr–Al is the reason of the presence of the quenched-in embryos in as-solidified samples, and the quenched-in embryos therefore provide nucleation sites for nanocrystal formation.  相似文献   

9.
The development of microstructure during crystallisation of a glass with composition Y15.2Si14.7Al8.7O54.1N7.4 has been studied by analytical and high resolution transmission electron microscopy. Crystal nucleation at temperatures in the range 965–1050°C occurs by the heterogeneous nucleation of lenticular-shaped yttrium, silicon and aluminium containing crystals on silicon-rich clusters that formed during glass preparation. The lenticular crystals have a wide range of composition after heat treatment at 1050°C; the yttrium cation percentage varies around that of the expected B-phase composition Y2SiAlO5N but the aluminium content is lower and the silicon content generally significantly higher than that. The crystals display the hexagonal crystal structure of B-phase, although the results from EDX analysis imply that the atomic arrangement of the lattice is not the previously proposed B-phase structure. Crystal growth during prolonged heat treatment at 1050°C occurs to a significant extent by coalescence.  相似文献   

10.
The interest in superionic systems has increased in recent years because of the potential application of these materials as solid electrolytes. In this field, amorphous materials present important advantages when compared to the crystalline solids: larger conductivity, isotropy and absence of grain boundaries. In this work, amorphous alloys of compositions (Ge25Se75)100−yAgy with y=10, 15, 20 and 25 at.% have been studied. Amorphous samples in bulk were obtained from the liquid by water quenching (melt-quenching technique). The crystallization kinetics of the amorphous alloys have been studied under continuous heating and isothermal conditions by means of differential scanning calorimetry. A glass transition and two exothermic transformations were observed in all the samples. The quenched samples and the crystallization products have been characterized by X-ray diffraction. The primary crystallization of the ternary phase Ag8GeSe6 and the secondary phase GeSe2 was observed. The glass and crystallization temperatures, the activation energy and the crystallization enthalpy are reported. The first step of the crystallization of the Ag8GeSe6 phase in all the (Ge25Se75)100−yAgy samples is modelled taking into account the Johnson–Mehl–Avrami–Kolmogorov theory and considering that the changes in the composition only modify the viscosity of the undercooled liquid. The transformation diagrams (TTT and THRT) are calculated and the glass forming ability is analyzed. The experimental results are discussed and correlated with the structures proposed for the glass. The present results and conclusions are also compared with those reported by other authors.  相似文献   

11.
Tellurite containing vanadate (50−x)V2O5xBi2O3–50TeO2 glasses with different bismuth (x=0, 5, 10, 15, 20 and 25 wt%) contents have been prepared by rapid quenching method. Ultrasonic velocities (both longitudinal and shear) and attenuation (for longitudinal waves only) measurements have been made using a transducer operated at the fundamental frequency of 5 MHz in the temperature range from 150 to 480 K. The elastic moduli, Debye temperature, and Poisson’s ratio have been obtained both as a function of temperature and Bi2O3 content. The room temperature study on ultrasonic velocities, attenuation, elastic moduli, Poisson’s ratio, Debye temperature and glass transition temperature show the absence of any anomalies with addition of Bi2O3 content. The observed results confirm that the addition of Bi2O3 modifier changes the rigid formula character of TeO2 to a matrix of regular TeO3 and ionic behaviour bonds (NBOs). A monotonic decrease in velocities and elastic moduli, and an increase in attenuation and acoustic loss as a function of temperature in all the glass samples reveal the loose packing structure, which is attributed to the instability of TeO4 trigonal bipyramid units in the network as temperature increases. It is also inferred that the glasses with low Bi2O3 content are more stable than with high Bi2O3 content.  相似文献   

12.
Surface crystallization in a rare-earth aluminosilicate glass (Nd2O3–Al2O3–SiO2–TiO2) was studied using an isothermal method and the crystal growth rate of the glasses was evaluated as a function of the composition. For measuring the surface crystal growth rate, two different methods: measurement of the crystal layer in the longitudinal and lateral growth direction. It was found that crystallization proceeded by surface crystallization only and TiO2 did not act as a nucleating agent. The growth rate was strongly dependent on the viscosity of glass and agreed with prediction from the Preston model using the known viscosity and melting temperature. As the Si/Nd and Si/Al ratios decreased, the crystal growth rate increased. TiO2 and Nd2O3 played the role of network modifier, which decreased the viscosity of the glass, facilitating crystallization of the rare-earth aluminosilicate glass.  相似文献   

13.
Fine-sized ZnO–B2O3–CaO–Na2O–P2O5 glass powders with spherical shape were directly prepared by high temperature spray pyrolysis. The ZnO–B2O3–CaO–Na2O–P2O5 powders prepared by spray pyrolysis at temperatures above 1200 °C had broad peaks at around 30° in the XRD patterns. The glass transition temperatures (Tg) of the glass powders obtained by spray pyrolysis at preparation temperatures between 900 °C and 1400 °C were near 480 °C regardless of the preparation temperatures. The dielectric layers formed from the glass powders prepared by spray pyrolysis at preparation temperatures above 1300 °C had clean surface and dense inner structure at the firing temperature of 580 °C. The transmittance of the dielectric layer formed from the glass powders obtained by spray pyrolysis at preparation temperature of 1400 °C was 90% at the firing temperature of 580 °C, in which the thickness of the dielectric layer was 13 μm. The UV cutoff edges gradually shift towards longer wavelength with increasing the preparation temperature of glass powders and the firing temperature of dielectric layers.  相似文献   

14.
There has been a great demand in the field of kitchen appliances to develop transparent water repellent films which have high heat-resistance around 300°C. However, those films have not been obtained by conventional sol–gel methods. In this paper, we propose a new method for fabricating transparent water repellent films with high heat-resistance using the sol–gel method, in which silicon or germanium substrates were coated with a solution including tetraethoxysilane (Si(OC2H5)4) and (2-perfluorooctyl)ethyltrimethoxysilane (CF3(CF2)7C2H4Si(OCH3)3), followed by ‘ammonia-treatment' and annealed at 300°C. The contact angles of water on the ammonia-treated film maintained its initial value, 110° after the heat treatment at 300°C for 250 h while those on the untreated film decreased to 70°, indicating that the ammonia-treatment improves heat-resistance on the film. The mechanism of ammonia-treatment was inferred from FT-IR results; the ammonia-treatment should accelerate hydrolysis and polymerization of FAS and TEOS molecules, resulting in high density of siloxane bonds between FAS and silica glass. These bonds suppress the evaporation of FAS molecules from the film during the heat treatment at 300°C, thus the film has high heat-resistance.  相似文献   

15.
An atomic structure of Al55(Cr1−xMnx)15Si30 (x = 0, 0.49,1) metallic glasses was studied by neutron diffraction. An advantage of the neutron diffraction technique was fully exploited by utilizing the negative scattering length of Mn to form a neutron zero scattering ‘alloy’ for the component Cr0.51Mn0.49 in this quaternary Al---(Cr, Mn)---Si alloy. This allows the atomic distribution of the resulting quasibinary Al---Si metallic glass to be derived directly. Moreover, the (Al, Si)---TM (TM = Mn, Cr) and TM---TM pair correlations were also extracted by taking appropriate linear combinations of the atomic structures for the Al55(Cr1−xMnx)15Si30 (x = 0, 0.49, 1) metallic glasses. A sharp first peak in the (Al,Si) ---TM pair correlations thus obtained led to the conclusion that a strong attractive interaction exists between (Al, Si) and TM atoms and, hence, that the presence of the TM atoms is responsible for the formation of an amorphous phase.  相似文献   

16.
New glasses in the PbBr2–PbCl2–PbF2–PbO–P2O5 system have been prepared and characterized. The glass-forming regions have been explored and the stability of the glasses against crystallization studied. Results show that the PbBr2–PbCl2–P2O5 ternary system has a broad glass-forming region which extends to 30 mol% P2O5. Most of the glasses in this system show strong stability against crystallization and some have glass transition temperatures as low as 146°C. When 5% PbO or 5% PbF2 is introduced into the PbBr2–PbCl2–P2O5 system, the glass-forming region becomes smaller and the glass transition temperatures increase. However, the introduction of 2.5% PbF2 and 2.5% PbO into the ternary system increases the glass transition temperature and broadens the glass-forming region. The introduction of PbF2 alone improves the glass-forming ability of the system while the introduction of PbO alone lowers the glass-forming ability.  相似文献   

17.
11B (I=3/2) MAS NMR in the binary glass system xV2O5–B2O3 (x=0.053, 0.43) and the ternary glass system xV2O5–B2O3–PbO (0.1x1.5) has been investigated at room temperature. In the xV2O5–B2O3 glasses, one NMR line due to BO3 unit was observed. Meanwhile in the xV2O5–B2O3–PbO, two NMR lines which arise from BO3 and BO4 units were detected, where the appearance of BO4 units is produced by the presence of PbO. From the computer-simulation of the 11B NMR central transition line (m=−1/2↔1/2), the quadrupole parameters (e2qQ/h and η) for BO3 units in xV2O5–B2O3, and those for BO3 and BO4 units in xV2O5–B2O3–PbO were obtained as a function of x. As the V2O5 content increases in xV2O5–B2O3–PbO, the e2qQ/h and η values of the BO3 associated resonance are found to slightly decrease and increase, respectively. Meanwhile, the e2qQ/h and η values of BO4 associated resonance in xV2O5–B2O3–PbO are found to slightly increase and decrease, respectively. By comparing the intensities of the total transitions (m=−3/2↔−1/2,m=−1/2↔1/2, and 1/2↔3/2) for the 11B NMR line of BO3 and BO4 units contained in xV2O5–B2O3–PbO with those of respective standard samples of 0.053V2O5–B2O3 and NaBH4, the quantitative fractions of BO3 and BO4 in xV2O5–B2O3–PbO were obtained as a function of x.  相似文献   

18.
The Si 2p soft X-ray photoemission study of various oxidized surfaces (thermal oxidation and room temperature (RT) oxidation) shows the benefit derived from the use of high-energy resolution (70 meV). Interesting structural information can be retrieved from an analysis of the line widths of the oxides, suboxides, and elemental Si peaks. In particular the binding energy (BE) of elemental silicon layers adjacent to the oxidized layer can be distinguished from that of deeper silicon layers (the two prominent ‘interfacial' elemental Si lines are shifted by about +0.2 and −0.2 eV). These new data show a possible effect of oxygen second neighbors on elemental Si 2p binding energies. Moreover, changes in the oxide/suboxide line widths – as seen in a comparative study of the Si(1 1 1)-7×7 surface thermally oxidized in O2 and exposed at RT to O2 or H2O – may be attributed to static disorder, i.e., variations in Si–O bond lengths.  相似文献   

19.
A structural study of Y2O3---Al2O3---SiO2 glass has been performed using the partial radial distribution function (RDF) obtained by anomalous scattering at the Y absorption edge. The partial RDF consists of contributions from atom pairs, such as Y---O, Y---M(Si, Al) and Y---Y, related to the local arrangements around the Y atoms, while those of all of the constituent atom-pairs are convoluted into the ordinary RDF. The M(Si, Al)---O, Y---O, M---M, Y---M, and Y---Y interatomic distances and the coordination numbers around the Al and Y atoms are obtained from the two RDFs. The local structures around the Al and Y atoms in the glass are discussed.  相似文献   

20.
Ag+/Na+ ion-exchanged R2O–Al2O3–SiO2 glasses with uniform concentration profile of Ag+ and Na+ were prepared by heat treatment in molten silver salt followed by holding at the same temperature in an ambient atmosphere. Their glass transition temperature (Tg) and thermal expansion coefficient (TEC) were measured and structures were investigated using 29Si-MAS NMR, 27Al-MAS NMR, IR and Raman spectroscopies. Both Tg and TEC decreased with increase of the exchange ratio, but Tg was still above the ion-exchange temperature of 400°C even for the fully exchanged sample. The 29Si- and 27Al-MAS NMR spectra were mostly unchanged and no sign of the structural alteration of the glass network was observed. On the other hand, the vibrational spectra showed remarkable peak shifts depending on the exchange ratio. From these structural results, it was found that when the exchange ratio was low, the introduced Ag+ ions were stabilized at the non-bridging oxygen (NBO) site, and then Na+ ions in AlØ4 site were exchanged by Ag+ ions after full replacement of NBO sites, where Ø represents the bridging oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号