首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Summary [RuCl(NO)2(dppbp)]BF4 (dppbp=(Ph2PCH2)2–) has been synthesised from [RuCl(NO)2(PPh3)2]BF4 and dppbp and characterised in the solid state by a single crystal x-ray determination. The [RuCl(NO)2(dppbp)]+ cation, has an approximately square-pyramidal co-ordination geometry with the dppbp ligand occupyingtrans-basal sites. The nitrosyl ligand in the apical site is partially bent [Ru–N–O=156.2(7)0] and the nitrosyl ligand in the basal side is essentially linear [Ru–N–O=172.5(6)0]. The1Hn.m.r. spectrum of [RuCl(NO)2(dppbp)]BF4 in solution has provided some insight into the dynamics of the complex in solution.  相似文献   

2.
The first heterodinuclear ruthenium(II) complexes of the 1,6,7,12‐tetraazaperylene (tape) bridging ligand with iron(II), cobalt(II), and nickel(II) were synthesized and characterized. The metal coordination sphere in this complexes is filled by the tetradentate N,N′‐dimethyl‐2,11‐diaza[3.3](2,6)‐pyridinophane (L‐N4Me2) ligand, yielding complexes of the general formula [(L‐N4Me2)Ru(µ‐tape)M(L‐N4Me2)](ClO4)2(PF6)2 with M = Fe {[ 2 ](ClO4)2(PF6)2}, Co {[ 3 ](ClO4)2(PF6)2}, and Ni {[ 4 ](ClO4)2(PF6)2}. Furthermore, the heterodinuclear tape ruthenium(II) complexes with palladium(II)‐ and platinum(II)‐dichloride [(bpy)2Ru(μ‐tape)PdCl2](PF6)2 {[ 5 ](PF6)2} and [(dmbpy)2Ru(μ‐tape)PtCl2](PF6)2 {[ 6 ](PF6)2}, respectively were also prepared. The molecular structures of the complex cations [ 2 ]4+ and [ 4 ]4+ were discussed on the basis of the X‐ray structures of [ 2 ](ClO4)4 · MeCN and [ 4 ](ClO4)4 · MeCN. The electrochemical behavior and the UV/Vis absorption spectra of the heterodinuclear tape ruthenium(II) complexes were explored and compared with the data of the analogous mono‐ and homodinuclear ruthenium(II) complexes of the tape bridging ligand.  相似文献   

3.
Summary The spectrochemical, electrochemical and electrocatalytic properties of Co[15]aneN4 ([15]aneN4 = 1,4,8,12-tetraazacyclopentadecane) have been investigated. The results show that, in aqueous solution, this compound mainly exists as three species whose axial coordination positions are occupied by water and/or hydroxy ligands; it is marginal whether other substrates such as Cl and NO inf3 sup– interact with the central ion in acid-base solutions. The approximate Pourbaix diagram of CoIII/II[15]ane N4 was determined. There is an electrochemically-induced isomerization between two trans conformational isomers of the Co[15]aneN4 complexes in acid and netural solutions. The Co[15]aneN4 complex has electrocatalytic properties for reduction of nitrate and nitrite only in strong alkaline solution.  相似文献   

4.
The synthesis, characterization and reactivity of trans-[Ru(NH3)4(L)NO](PF6)3(L = benzoimidazole or 1-methylimidazole in trans position to NO) are presented. 1H-n.m.r. spectroscopy data indicate that the benzoimidazole and 1-methylimidazole ligands are coordinated to RuII through carbon and nitrogen, respectively. The nitrosyl stretching frequencies [(NO) > 1900 cm–1] suggest that the coordinated nitrosyl has substantial NO+ character. The complexes undergo a single-electron reduction (E 0–0.245 versus NHE), which involves the coordinated nitrosyl. Dissociation of NO in the reduced species is facilitated by the 1-methylimidazole ligand, which is not observed for the benzoimidazole species. The complex with 1-methylimidazole does not suffer hydroxide attack on the NO+, at least at pH values lower than 11.  相似文献   

5.
《Polyhedron》1999,18(26):3451-3460
The 12-membered macrocyclic ligand 1-thia-4,7,10-triazacyclododecane ([12]aneN3S) has been synthesised, although upon crystallization from acetonitrile a product in which carbon dioxide had added to one secondary amine in the macrocyclic ring (H[12]aneN3S–CO2·H2O) was isolated and subsequently characterised by X-ray crystallography. The protonation constants for [12]aneN3S and stability constants with Zn(II), Pb(II), Cd(II) and Cu(II) have been determined either potentiometrically or spectrophotometrically in aqueous solution, and compared with those measured or reported for the ligands 1-oxa-4,7,10-triazacyclododecane ([12]aneN3O) and 1,4,7,10-tetraazacyclododecane ([12]aneN4). The magnitudes of the stability constants are consistent with trends observed previously for macrocyclic ligands as secondary amine donors are replaced with oxygen and thioether donors although the stability constant for the [Hg([12]aneN4)]2+ complex has been estimated from an NMR experiment to be at least three orders of magnitude larger than reported previously. Zinc(II), mercury(II), lead(II), copper(II) and nickel(II) complexes of [12]aneN3S have been isolated and characterised by X-ray crystallography. In the case of copper(II), two complexes [Cu([12]aneN3S)(H2O)](ClO4)2 and [Cu2([12]aneN3S)2(OH)2](ClO4)2 were isolated, depending on the conditions employed. Molecular mechanics calculations have been employed to investigate the relative metal ion size preferences of the [3333], asym-[2424] and sym-[2424] conformation isomers. The calculations predict that the asym-[2424] conformer is most stable for M–N bond lengths in the range 2.00–2.25 Å whilst for the larger metal ions the [3333] conformer is dominant. The disorder seen in the structure of the [Zn([12]aneN3S)(NO3)]+ complex is also explained by the calculations.  相似文献   

6.
The complex Mn[15]aneN5CIPF6 has been prepared by the reaction of MnCI2 [15]aneN5.3HPF6, and NaOH in water ([15]aneN5 is 1,4,7,10,13-pentaazacyclopentadecane). The complex is obtained as a white solid formulated as [Mn(C10H25N5)Cl](PF6).3/2H2O. It is a 2: 1 electrolyte in H2O and a 1:1 electrolyte in CH3CN, The complex contains high spin Mn(II), μeff = 5.83 B.M., and the EPR spectrum of the polycrystalline solid is indicative of rhombic symmetry at the metal site. The proton NMR relaxation enhancement of aqueous solvent by the complex is 2.3 mM?1S ?1 at 24 MHz and 25°C and is indicative of one rapidly exchanging water molecule in the coordination sphere of the solvated complex. The stability constant for the formation of the complex in aqueous solution as measured by potentiometric titration (IogK = 10.7) is four orders of magnitude greater than the comparable linear polyamine. In all, the characterization data are consistent with Mn(lI) strongly bound to a distorted or folded ligand and able to accommodate only one additional ligand.  相似文献   

7.
Nitrosylruthenium complexes containing 2,2':6',2"-terpyridine (terpy) have been synthesized and characterized. The three alkoxo complexes trans-(NO, OCH3), cis-(Cl, OCH3)-[RuCl(OCH3)(NO)(terpy)]PF6 ([2]PF6), trans-(NO, OC2H5), cis-(Cl, OC2H5)-[RuCl(OC2H5)(NO)(terpy)]PF6 ([3]PF6), and [RuCl(OC3H7)(NO)(terpy)]PF6 ([4]PF6) were synthesized by reactions of trans-(Cl, Cl), cis-(NO, Cl)-[RuCl2(NO)(terpy)]PF6 ([1]PF6) with NaOCH3 in CH3OH, C2H5OH, and C3H7OH, respectively. Reactions of [3]PF6 with an acid such as hydrochloric acid and trifluoromethansulforic acid afford nitrosyl complexes in which the alkoxo ligand is substituted. The geometrical isomer of [1]PF6, trans-(NO, Cl), cis-(Cl, Cl)-[RuCl2(NO)(terpy)]PF6 ([5]PF6), was obtained by the reaction of [3]PF6 in a hydrochloric acid solution. Reaction of [3]PF6 with trifluoromethansulforic acid in CH3CN gave trans-(NO, Cl), cis-(CH3CN, Cl)-[RuCl(CH3CN)(NO)(terpy)]2+ ([6]2+) under refluxing conditions. The structures of [3]PF6, [4]PF6.CH3CN, [5]CF3SO3, and [6](PF6)2 were determined by X-ray crystallograpy.  相似文献   

8.
Coordination equilibrium constants (K NiS) of some donor solvent molecules to 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecanenickel(II) ([Ni(Me4[12]aneN4)]2+) were determined in nitrobenzene (a noncoordinating bulk solvent). The first (K NiS1) and second stepwise coordination equilibrium constants (K NiS2) for 1,4,7,10-tetraazacyclododecanenickel(II) ([Ni([12]aneN4)]2+), 1,4,8,11-tetraazac yclotetradecane- nickel(II) ([Ni([14] aneN4)]2+), 1,4,8,11-tetrathiacyclotetra-decanenickel(II) ([Ni([14]aneS4)]2+) were also reinvestigated. The K NiS values for [Ni(Me4[12]aneN4)]2+ were compared to those of [Ni([12]aneN4)]2+, (1R,4S, 8R,11S)-1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecanenickel(II) (R,S,R,S-[Ni(Me4[14]aneN4)]2+), R,R,S,S-[Ni(Me4[14]aneN4)]2+, [Ni([14]aneN4)]2+, and [Ni([14]aneS4)]2+. Coordination of pyridine (Py), N,N,N′,N′-tetramethylurea (TMU), and N,N-dimethylacetamide (DMA) to [Ni(Me4[12]aneN4)]2+ was observed, although these donor solvent molecules did not coordinate to R,S,R,S-[Ni(Me4[14]aneN4)]2+. The K NiS values for Py, TMU, and DMA are 7.9, 2.8, and 9.0 dm3⋅mol−1, respectively. Some hydrogen-bonding waters were coordinated to R,S,R,S-[Ni(Me4[14]aneN4)]2+, but such waters did not coordinate to [Ni(Me4[12] aneN4)]2+. Also, the K NiS2 values were larger than the corresponding K NiS1 values for [Ni([14]aneS4)]2+. Furthermore, the K NiS1 values for [Ni([12]aneN4)]2+ were the largest among these nickel(II) complex cations. The K NiS, K NiS1, and K NiS2 values are discussed in terms of properties of the donor solvents and steric strains of these nickel(II) complex cations.  相似文献   

9.
Summary Dissolved SO2 reacts rapidly with [Co([16]aneN5)OH]2+ to give [Co([16]aneN5OSO2]+([16]aneN5=1,4,7,10, 13-penta-azacyclohexadecane), which on immediate acidification loses SO2 to give [Co([16]aneN5)OH2]3+. The O-bonded sulphito complex (max 526 nm) undergoes a slow linkage isomerisation to give the S-bonded species [Co([16]aneN5)SO3]+ (max 466 nm), rather than an internal redox reaction. The S-bonded complex has been isolated and characterised as the perchlorate salt [Co([16]aneN5) (SO3H)](ClO4)2.  相似文献   

10.
The crystal structure and in vitro cytotoxicity of the amphiphilic ruthenium complex [ 3 ](PF6)2 are reported. Complex [ 3 ](PF6)2 contains a Ru?S bond that is stable in the dark in cell‐growing medium, but is photosensitive. Upon blue‐light irradiation, complex [ 3 ](PF6)2 releases the cholesterol–thioether ligand 2 and an aqua ruthenium complex [ 1 ](PF6)2. Although ligand 2 and complex [ 1 ](PF6)2 are by themselves not cytotoxic, complex [ 3 ](PF6)2 was unexpectedly found to be as cytotoxic as cisplatin in the dark, that is, with micromolar effective concentrations (EC50), against six human cancer cell lines (A375, A431, A549, MCF‐7, MDA‐MB‐231, and U87MG). Blue‐light irradiation (λ=450 nm, 6.3 J cm?2) had little influence on the cytotoxicity of [ 3 ](PF6)2 after 6 h of incubation time, but it increased the cytotoxicity of the complex by a factor 2 after longer (24 h) incubation. Exploring the unexpected biological activity of [ 3 ](PF6)2 in the dark elucidated an as‐yet unknown bifaceted mode of action that depended on concentration, and thus, on the aggregation state of the compound. At low concentration, it acts as a monomer, inserts into the membrane, and can deliver [ 1 ]2+ inside the cell upon blue‐light activation. At higher concentrations (>3–5 μm ), complex [ 3 ](PF6)2 forms supramolecular aggregates that induce non‐apoptotic cell death by permeabilizing cell membranes and extracting lipids and membrane proteins.  相似文献   

11.
Treatment of a THF solution of trans-[ReCl(N2)(dppe)2] (dppe = Ph2PCH2CH2PPh2) with NO, in the presence of Tl[BF4], forms trans-[Re(NO)2(dppe)2][BF4], a rare formal 20-electron d8-rhenium nitrosyl complex which, by reaction with HX (X = BF4, Cl or HSO4), gives trans-[ReF(NO)(dppe)2][BF4] (2) (the X-ray structure of which is reported) or trans-[ReX(NO)(dppe)2]X (3, X = Cl or HSO4), respectively, as well as nitrous oxide.  相似文献   

12.
Two stereoisomers of cis-[Ru(bpy)(pynp)(CO)Cl]PF6 (bpy = 2,2′-bipyridine, pynp = 2-(2-pyridyl)-1,8-naphthyridine) were selectively prepared. The pyridyl rings of the pynp ligand in [Ru(bpy)(pynp)(CO)Cl]+ are situated trans and cis, respectively, to the CO ligand. The corresponding CH3CN complex ([Ru(bpy)(pynp)(CO)(CH3CN)]2+) was also prepared by replacement reactions of the chlorido ligand in CH3CN. Using these complexes, ligand-centered redox behavior was studied by electrochemical and spectroelectrochemical techniques. The molecular structures of pynp-containing complexes (two stereoisomers of [Ru(bpy)(pynp)(CO)Cl]PF6 and [Ru(pynp)2(CO)Cl]PF6) were determined by X-ray structure analyses.  相似文献   

13.
《Tetrahedron: Asymmetry》2003,14(7):845-854
Cationic ruthenium complexes of the type [RuCl(L)(PNNP)]+ (L=OEt2, OH2), where PNNP is the CF3-subsituted PNNP ligand N,N′-bis[o-(bis(4-trifluoromethylphenyl)phosphino)benzylidene]-(1S,2S)-diaminocyclohexane 1b, catalyse the asymmetric cyclopropanation of styrene, α-Me-styrene, and 1-octene with ethyl diazoacetate. These complexes are more active and give higher cis- and enantioselectivities than their analogues containing the unsubstituted ligand 1a. Thus, [RuCl(OEt2)(1b)]PF6 cyclopropanates α-Me-styrene with 85% cis selectivity and 86% ee in 94% isolated yield.  相似文献   

14.
The complexes trans-[RuCl2(L){(S,S)-iPr-pybox}] ((S,S)-iPr-pybox = 2,6-bis[4′-(S)-isopropyloxazolin-2′-yl]pyridine, L = PMe3 (1), P(OMe)3 (2), PPh2(CH2CHCH2) (3), CNBn (5), CNCy (6) and MeCN (7)) have been synthesized by substitution of ethylene on the precursor trans-[RuCl2(η2-C2H4){(S,S)-iPr-pybox}]. This complex also reacts with cyclooctadiene (cod) or norbornadiene (nbd) and NaPF6, in refluxing methanol, giving the coordination compounds [RuCl(η4-cod){(S,S)-iPr-pybox}][PF6] (8) and [RuCl(η4-nbd){(S,S)-iPr-pybox}][PF6] (9). The structures of complexes [RuCl(CO)(PPh3)(H-pybox)][BF4] (H-pybox = 2,6-bis(dihydrooxazolin-2′-yl)pyridine) (4), 6 and 8, have been resolved by X-ray diffraction methods. The catalytic activity of the new complexes in transfer hydrogenation of acetophenone has also been examined.  相似文献   

15.
Summary [OsCl(NO)2(PPh3)2]BF4 has been synthesised from [OsCl(CO)(NO)(PPh3)2] and NOBF4 and characterised in the solid state by a single crystal x-ray analysis determination and in solution by31P{1H} and15N n.m.r. studies. The nitrosyl ligands in [OsCl(NO)2(PPh3)2]+ are approximately linear, and 170(1)0, and the co-ordination geometry about the metal ion is close to trigonal bipyramidal. This contrasts with the occurrence of a linear and a bent nitrosyl ligand in [RuCl(NO)2(PPh3)2]+ and a square-pyramidal metal geometry. In solution the15N n.m.r. spectrum of a 50%15N enriched sample of [OsCl(NO)2(PPh3)2]+ shows an equilibrium isotope effect similar to that reported for [RuCl(NO)2(PPh3)2]+ and suggests that both complexes exist in solution as rapidly equilibrating isomeric forms.  相似文献   

16.
Achiral P‐donor pincer‐aryl ruthenium complexes ([RuCl(PCP)(PPh3)]) 4c , d were synthesized via transcyclometalation reactions by mixing equivalent amounts of [1,3‐phenylenebis(methylene)]bis[diisopropylphosphine] ( 2c ) or [1,3‐phenylenebis(methylene)]bis[diphenylphosphine] ( 2d ) and the N‐donor pincer‐aryl complex [RuCl{2,6‐(Me2NCH2)2C6H3}(PPh3)], ( 3 ; Scheme 2). The same synthetic procedure was successfully applied for the preparation of novel chiral P‐donor pincer‐aryl ruthenium complexes [RuCl(P*CP*)(PPh3)] 4a , b by reacting P‐stereogenic pincer‐arenes (S,S)‐[1,3‐phenylenebis(methylene)]bis[(alkyl)(phenyl)phosphines] 2a , b (alkyl=iPr or tBu, P*CHP*) and the complex [RuCl{2,6‐(Me2NCH2)2C6H3}(PPh3)], ( 3 ; Scheme 3). The crystal structures of achiral [RuCl(equation/tex2gif-sup-3.gifPCP)(PPh3)] 4c and of chiral (S,S)‐[RuCl(equation/tex2gif-sup-6.gifPCP)(PPh3)] 4a were determined by X‐ray diffraction (Fig. 3). Achiral [RuCl(PCP)(PPh3)] complexes and chiral [RuCl(P*CP*)(PPh3)] complexes were tested as catalyst in the H‐transfer reduction of acetophenone with propan‐2‐ol. With the chiral complexes, a modest enantioselectivity was obtained.  相似文献   

17.
The oxidation of [MII(3,5-DTBCat)(DTBbpy)] (M=Ni ( [Ni] ), Pd ( [Pd] ), and Pt ( [Pt] ); 3,5-DTBCat=3,5-di-tert-butylcatecholato; DTBbpy=4,4′-di-tert-butyl-2,2′-bipyridine) afforded the dimeric {[NiII(3,5-DTBSQ)(DTBbpy)](PF6)}2 ( {[Ni](PF6)}2 ; 3,5-DTBSQ=3,5-di-tert-butylsemiquinonato) and monomeric semiquinonato (SQ) complexes [MII(3,5-DTBSQ)(DTBbpy)](PF6) (M=Pd ( [Pd](PF6) ) and Pt ( [Pt](PF6) )). The negative solvatochromic properties of the SQ complexes allowed us to estimate the relative order of their dipole moments: [Pd](PF6) > [Pt](PF6) > {[Ni](PF6)}2 . The complexes [Pd](PF6) and [Pt](PF6) adopt monomeric structures and are stable in CH2Cl2 and toluene, whereas they gradually disproportionate at room temperature to [M] and 3,5-di-tert-butylbenzoquinone (3,5-DTBBQ) in polar solvents such as THF, MeOH, EtOH, DMF, or DMSO. The results of spectroscopic studies suggested that the oxidized nickel complex adopts a monomeric structure ( [Ni](PF6) ) in CH2Cl2, but a dimeric structure ( {[Ni](PF6)}2 ) in the other investigated solvents. In polar solvents, {[Ni](PF6)}2 may disproportionate to [Ni] and 3,5-DTBBQ at 323 K, thereby demonstrating a significant solvent- and metal-dependence in temperature. The relative activities of {[Ni](PF6)}2 and [M](PF6) toward disproportionation are related to the electrochemically estimated Kdis values in CH2Cl2 and DMF. The present work demonstrates that solvent polarity and the dipole moments of the SQ complexes promote disproportionation, which can be controlled by a judicious choice of the metal ion, solvent, and temperature.  相似文献   

18.
The synthesis, characterization and comparison of the enantiomeric transition metal complexes, trans-[Rh-(S-(–)-nicH+)4Cl2](PF6)5 and trans-[Rh-(R-(+)-nicH+)4Cl2](PF6)5, and of the racemic mixture trans-[Rh-(RS-(±)-nicH+)4Cl2](PF6)5 are described.  相似文献   

19.
Cyclometallated ruthenium complexes typically exhibit red-shifted absorption bands and lower photolability compared to their polypyridyl analogues. They also have lower symmetry, which sometimes makes their synthesis challenging. In this work, the coordination of four N,S bidentate ligands, 3-(methylthio)propylamine (mtpa), 2-(methylthio)ethylamine (mtea), 2-(methylthio)ethyl-2-pyridine (mtep), and 2-(methylthio)methylpyridine (mtmp), to the cyclometallated precursor [Ru(bpy)(phpy)(CH3CN)2]+ (bpy=2,2′-bipyridine, Hphpy=2-phenylpyridine) has been investigated, furnishing the corresponding heteroleptic complexes [Ru(bpy)(phpy)(N,S)]PF6 ([ 2 ]PF6–[ 5 ]PF6, respectively). The stereoselectivity of the synthesis strongly depended on the size of the ring formed by the Ru-coordinated N,S ligand, with [ 2 ]PF6 and [ 4 ]PF6 being formed stereoselectively, but [ 3 ]PF6 and [ 5 ]PF6 being obtained as mixtures of inseparable isomers. The exact stereochemistry of the air-stable complex [ 4 ]PF6 was established by a combination of DFT, 2D NMR, and single-crystal X-ray crystallographic studies. Finally, [ 4 ]PF6 was found to be photosubstitutionally active under irradiation with green light in acetonitrile, which makes it the first cyclometallated ruthenium complex capable of undergoing selective photosubstitution of a bidentate ligand.  相似文献   

20.
The mononuclear η5-cyclopentadienyl complexes [(η5-C5H5)Ru(PPh3)2Cl], [(η5-C5H5)Os(PPh3)2Br] and pentamethylcyclopentadienyl complex [(η5-C5Me5)Ru(PPh3)2Cl] react in the presence of 1 eq. of the tetradentate N,N′-chelating ligand 3,5-bis(2-pyridyl)pyrazole (bpp-H) and 1 eq. of NH4PF6 in methanol to afford the mononuclear complexes [(η5-C5H5)Ru(PPh3)(bpp-H)]PF6 ([1]PF6), [(η5-C5H5)Os(PPh3)(bpp-H)]PF6 ([2]PF6) and [(η5-C5Me5)Ru(PPh3)(bpp-H)]PF6 ([3]PF6), respectively. The dinuclear η5-pentamethylcyclopentadienyl complexes [(η5-C5Me5)Rh(μ-Cl)Cl]2 and [(η5-C5Me5)Ir(μ-Cl)Cl]2 as well as the dinuclear η6-arene ruthenium complexes [(η6-C6H6)Ru(μ-Cl)Cl]2 and [(η6-p-iPrC6H4Me)Ru(μ-Cl)Cl]2 react with 2 eq. of bpp-H in the presence of NH4PF6 or NH4BF4 to afford the corresponding mononuclear complexes [(η5-C5Me5)Rh(bpp-H)Cl]PF6 ([4]PF6), [(η5-C5Me5)Ir(bpp-H)Cl]PF6 ([5]PF6), [(η6-C6H6)Ru(bpp-H)Cl]BF4 ([6]BF4) and [(η6-p-iPrC6H4Me)Ru(bpp-H)Cl]BF4 ([7]BF4). However, in the presence of 1 eq. of bpp-H and NH4BF4 the reaction with the same η6-arene ruthenium complexes affords the dinuclear salts [(η6-C6H6)2Ru2(bpp)Cl2]BF4 ([8]BF4) and [(η6-p-iPrC6H4Me)2Ru2(bpp)Cl2]BF4 ([9]BF4), respectively. These compounds have been characterized by IR, NMR and mass spectrometry, as well as by elemental analysis. The molecular structures of [1]PF6, [5]PF6 and [8]BF4 have been established by single crystal X-ray diffraction studies and some representative complexes have been studied by UV–vis spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号