首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aspects of the molecular structure of the mineral dorfmanite Na2(PO3OH)·2H2O were determined by Raman spectroscopy. The mineral originated from the Kedykverpakhk Mt., Lovozero, Kola Peninsula, Russia. Raman bands are assigned to the hydrogen phosphate units. The intense Raman band at 949 cm−1 and the less intense band at 866 cm−1 are assigned to the PO3 and POH stretching vibrations. Bands at 991, 1066 and 1141 cm−1 are assigned to the ν3 antisymmetric stretching modes. Raman bands at 393, 413 and 448 cm−1 and 514, 541 and 570 cm−1 are attributed to the ν2 and ν4 bending modes of the HPO4 units, respectively. Raman bands at 3373, 3443 and 3492 cm−1 are assigned to water stretching vibrations. POH stretching vibrations are identified by bands at 2904, 3080 and 3134 cm−1. Raman spectroscopy has proven very useful for the study of the structure of the mineral dorfmanite.  相似文献   

2.
Raman spectra of mineral peretaite Ca(SbO)4(OH)2(SO4)2·2H2O were studied, and related to the structure of the mineral. Raman bands observed at 978 and 980 cm?1 and a series of overlapping bands observed at 1060, 1092, 1115, 1142 and 1152 cm?1 are assigned to the SO42? ν1 symmetric and ν3 antisymmetric stretching modes. Raman bands at 589 and 595 cm?1 are attributed to the SbO symmetric stretching vibrations. The low intensity Raman bands at 650 and 710 cm?1 may be attributed to SbO antisymmetric stretching modes. Raman bands at 610 cm?1 and at 417, 434 and 482 cm?1 are assigned to the SO42? ν4 and ν2 bending modes, respectively. Raman bands at 337 and 373 cm?1 are assigned to O–Sb–O bending modes. Multiple Raman bands for both SO42? and SbO stretching vibrations support the concept of the non-equivalence of these units in the peretaite structure.  相似文献   

3.
Raman spectra of coquandite Sb6O8(SO4)·(H2O) were studied, and related to the structure of the mineral. Raman bands observed at 970, 990 and 1007 cm?1 and a series of overlapping bands are observed at 1072, 1100, 1151 and 1217 cm?1 are assigned to the SO42? ν1 symmetric and ν3 antisymmetric stretching modes respectively. Raman bands at 629, 638, 690, 751 and 787 cm?1 are attributed to the SbO stretching vibrations. Raman bands at 600 and 610 cm?1 and at 429 and 459 cm?1 are assigned to the SO42? ν4 and ν2 bending modes. Raman bands at 359 and 375 cm?1 are assigned to O–Sb–O bending modes. Multiple Raman bands for both SO42? and SbO stretching vibrations support the concept of the non-equivalence of these units in the coquandite structure.  相似文献   

4.
This research was done on hureaulite samples from the Cigana claim, a lithium bearing pegmatite with triphylite and spodumene. The mine is located in Conselheiro Pena, east of Minas Gerais. Chemical analysis was carried out by Electron Microprobe analysis and indicated a manganese rich phase with partial substitution of iron. The calculated chemical formula of the studied sample is: (Mn3.23, Fe1.04, Ca0.19, Mg0.13)(PO4)2.7(HPO4)2.6(OH)4.78. The Raman spectrum of hureaulite is dominated by an intense sharp band at 959 cm−1 assigned to PO stretching vibrations of HPO42− units. The Raman band at 989 cm−1 is assigned to the PO43− stretching vibration. Raman bands at 1007, 1024, 1047, and 1083 cm−1 are attributed to both the HOP and PO antisymmetric stretching vibrations of HPO42− and PO43− units. A set of Raman bands at 531, 543, 564 and 582 cm−1 are assigned to the ν4 bending modes of the HPO42− and PO43− units. Raman bands observed at 414, and 455 cm−1 are attributed to the ν2 HPO42− and PO43− units. The intense A series of Raman and infrared bands in the OH stretching region are assigned to water stretching vibrations. Based upon the position of these bands hydrogen bond distances are calculated. Hydrogen bond distances are short indicating very strong hydrogen bonding in the hureaulite structure. A combination of Raman and infrared spectroscopy enabled aspects of the molecular structure of the mineral hureaulite to be understood.  相似文献   

5.
A laueite mineral sample from Lavra Da Ilha, Minas Gerais, Brazil has been studied by vibrational spectroscopy and scanning electron microscopy with EDX. Chemical formula calculated on the basis of semi-quantitative chemical analysis can be expressed as (Mn2+0.85,Fe2+0.10Mg0.05)∑1.00(Fe3+1.90,Al0.10)∑2.00(PO4)2(OH)2·8H2O.The laueite structure is based on an infinite chains of vertex-linked oxygen octahedra, with Fe3+ occupying the octahedral centers, the chain oriented parallel to the c-axis and linked by PO4 groups. Consequentially not all phosphate units are identical. Two intense Raman bands observed at 980 and 1045 cm−1 are assigned to the ν1 PO43− symmetric stretching mode. Intense Raman bands are observed at 525 and 551 cm−1 with a shoulder at 542 cm−1 are assigned to the ν4 out of plane bending modes of the PO43−. The observation of multiple bands supports the concept of non-equivalent phosphate units in the structure. Intense Raman bands are observed at 3379 and 3478 cm−1 and are attributed to the OH stretching vibrations of the hydroxyl units. Intense broad infrared bands are observed. Vibrational spectroscopy enables subtle details of the molecular structure of laueite to be determined.  相似文献   

6.
The phosphate mineral series eosphorite–childrenite–(Mn,Fe)Al(PO4)(OH)2·(H2O) has been studied using a combination of electron probe analysis and vibrational spectroscopy. Eosphorite is the manganese rich mineral with lower iron content in comparison with the childrenite which has higher iron and lower manganese content. The determined formulae of the two studied minerals are: (Mn0.72,Fe0.13,Ca0.01)(Al)1.04(PO4, OHPO3)1.07(OH1.89,F0.02)·0.94(H2O) for SAA-090 and (Fe0.49,Mn0.35,Mg0.06,Ca0.04)(Al)1.03(PO4, OHPO3)1.05(OH)1.90·0.95(H2O) for SAA-072. Raman spectroscopy enabled the observation of bands at 970 cm−1 and 1011 cm−1 assigned to monohydrogen phosphate, phosphate and dihydrogen phosphate units. Differences are observed in the area of the peaks between the two eosphorite minerals. Raman bands at 562 cm−1, 595 cm−1, and 608 cm−1 are assigned to the ν4 bending modes of the PO4, HPO4 and H2PO4 units; Raman bands at 405 cm−1, 427 cm−1 and 466 cm−1 are attributed to the ν2 modes of these units. Raman bands of the hydroxyl and water stretching modes are observed. Vibrational spectroscopy enabled details of the molecular structure of the eosphorite mineral series to be determined.  相似文献   

7.
A series of selected pyromorphite minerals Pb5(PO4)3Cl from different Australian localities has been studied by Raman spectroscopy complemented with selected infrared spectroscopy. The Raman spectrum of unsubstituted pyromorphite shows a single band at around 920 cm−1 but for the natural minerals two bands at 919 and ∼932 cm−1 attributed to the ν1 (PO4)3− stretching vibration. The observation of multiple bands is attributed to the non-equivalence of phosphate units in the pyromorphite structure and the reduction in symmetry of the (PO4)3− units. This symmetry reduction is confirmed by the observation of multiple bands in both the ν4 bending region (500–595 cm−1) and the ν2 bending region (350–500 cm−1). The presence of isomorphic substitution of (PO4)3− by (AsO4)3− units is identified by the ν1 symmetric stretching bands at around 824 and 851 cm−1 and the ν2 bending region around 331 and 354 cm−1. Contrary to expectation Raman bands in the 3320–3700 cm−1 region are observed and assigned to OH stretching bands of OH units resulting from the substitution of chloride anions in the pyromorphite structure. This study brings in to question the actual formula of natural pyromorphite as it is better represented as Pb5(PO4,AsO4)3(Cl,OH) · xH2O.  相似文献   

8.
The minerals mimetite Pb5(AsO4)3Cl, arsenian pyromorphite Pb5(PO4,AsO4)3Cl and hedyphane Pb3Ca2(AsO4)3Cl have been studied by Raman spectroscopy complimented with infrared spectroscopy. Mimetite is characterised by a band at 812–3 cm−1 attributed to the Ag mode. For the arsenian pyromorphite this band is observed at 818 cm−1 and for hedyphane at 819 cm−1. For mimetite and hedyphane bands at 788 and 765 cm−1 are attributed to Au and E1u vibrational modes and are both Raman and infrared active. For the arsenian pyromorphite, Raman bands at 917–1014 cm−1 are attributed to phosphate stretching vibrations. Raman spectroscopy clearly identifies bands attributable to isomorphous substitution of arsenate by phosphate. The observation of low intensity bands in the 3200–3550 cm−1 region are assigned to adsorbed water and OH units, thus indicating some replacement of chloride ions with hydroxyl ions.  相似文献   

9.
Natural berlinite from a heated sedimentary sequence in Cioclovina Cave (Romania) was studied using Raman spectroscopy complemented with infrared techniques. Vibrational data acquired at room temperature were compared with those reported for synthetic berlinite in ambient conditions. The symmetry of the (PO4)3? units is confirmed by the observation of characteristic bands attributed to the ν1(PO4)3? stretching mode, both the ν4 and ν2 bending regions at 500–595 cm?1, and 350–500 cm?1, respectively. The berlinite Raman fingerprint was unambiguously identified at 1111 and 1104 cm?1, confirming the identity of the species and elucidating some controversial reports in the mineralogy field.The vibrational data of natural berlinite relates to its crystallography, and along with the spectra–structure correlation, confirmed an almost ideal natural berlinite crystal.  相似文献   

10.
Abstract— Resonance Raman (RR) bands assignable to the 21Ag excited state of ß-carotene are recorded using picosecond time-resolved resonance Raman (PTR3) spectroscopy. The RR spectrum contains bands in both the C-C (1204 cm?1, 1243 cm?1, and 1282 cm?1) and C=C (1777 cm?1) stretching regions. The time-dependent intensities of these RR features, measured with ? 30 ps. resolution, are found (i) to closely correlate with picosecond transient absorption (PTA) data recorded at 575 nm on the same sample and (ii) inversely correlate with the time-dependent intensities of RR bands assigned to the 11Ag ground state. Both of these observations support the assignment of these four RR features to the 21Ag excited state. These results remove uncertainties associated with earlier experiments in which excited-state RR scattering from (3-carotene was not observed in spite of predicted trends emanating from studies of shorter polyene compounds. The observed C=C band position also agrees with a recent report of this feature.  相似文献   

11.
Neutron inelastic scattering spectra of NaHC2O4, KHC2O4 crystals at 80 K have been recorded in the 2200-200 cm?1 range. The lithium acid salt was also studied at different temperatures. NIS spectra are compared to the corresponding infrared and Raman spectra and an assignment is proposed. Two strong bands near 1500 and 1100 cm?1 are assigned to δ(OH) and γ(OH) vibrations, respectively, while five weak bands below 900 cm?1 are associated with skeletal modes, mainly bending vibrations. The OH stretching vibration is not observed and is believed to be hidden by other bands; the peak intensity must be low because of its band width which is of the order of a few hundreds wavenumbers.  相似文献   

12.
Raman spectroscopy complimented with infrared spectroscopy has been used to characterise the antimonate mineral bindheimite Pb2Sb2O6(O,OH). The mineral is characterised by an intense Raman band at 656 cm−1 assigned to SbO stretching vibrations. Other lower intensity bands at 664, 749 and 814 cm−1 are also assigned to stretching vibrations. This observation suggests the non-equivalence of SbO units in the structure. Low intensity Raman bands at 293, 312 and 328 cm−1 are assigned to the OSbO bending vibrations. Infrared bands at 979, 1008, 1037 and 1058 cm−1 may be assigned to δOH deformation modes of SbOH units. Infrared bands at 1603 and 1640 cm−1 are assigned to water bending vibrations, suggesting that water is involved in the bindheimite structure. Broad infrared bands centred upon 3250 cm−1 supports this concept. Thus the true formula of bindheimite is questioned and probably should be written as Pb2Sb2O6(O,OH,H2O).  相似文献   

13.
On increasing the wavelength of excitation over the range 350–700 nm, Raman bands of pyridine adsorbed at a roughened silver electrode are found to increase in intensity, relative to bands of the bulk medium (aqueous perchlorate or liquid pyridine) in contact with the electrode. The increase is observed in the bands at 1000–1050 cm?1 and 1600 cm?1 due to ring stretching, and similar increases are observed in other bands of the surface species, notably those due to CH stretching (3076 cm?1), b2 ring deformation (669 cm?1, and AgN stretching (239 cm?1, which have not been reported previously.  相似文献   

14.
We report the infrared, Raman, and surface‐enhanced Raman scattering (SERS) spectra of triruthenium dipyridylamido complexes and of diruthenium mixed nickel metal‐string complexes. From the results of analysis on the vibrational modes, we assigned their vibrational frequencies and structures. The infrared band at 323–326 cm?1 is assigned to the Ru3 asymmetric stretching mode for [Ru3(dpa)4Cl2]0–2+. In these complexes we observed no Raman band corresponding to the Ru3 symmetric stretching mode although this mode is expected to have substantial Raman intensity. There is no frequency shift in the Ru3 asymmetric stretching modes for the complexes with varied oxidational states. No splitting in Raman spectra for the pyridyl breathing line indicates similar bonding environment for both pyridyls in dpa , thus a delocalized structure in the [Ru3]6–8+ unit is proposed. For Ru3(dpa)4(CN)2 complex series, we assign the infrared band at 302 cm?1 to the Ru3 asymmetric stretching mode and the weak Raman line at 285 cm?1 to the Ru3 symmetric stretching. Coordination to the strong axial ligand CN weakens the Ru‐Ru bonding. For the diruthenium nickel complex [Ru2Ni(dpa)4Cl2]0–1+, the diruthenium stretching mode νRu‐Ru is assigned to the intense band at 327 and 333 cm?1 in the Raman spectra for the neutral and oxidized forms, respectively. This implies a strong Ru‐Ru metal‐metal bonding.  相似文献   

15.
The thermal analysis of euchroite shows two mass loss steps in the temperature range 100–105 °C and 185–205 °C. These mass loss steps are attributed to dehydration and dehydroxylation of the mineral. Hot-stage Raman spectroscopy (HSRS) has been used to study the thermal stability of the mineral euchroite, a mineral involved in a complex set of equilibria between the copper hydroxy arsenates: euchroite Cu2(AsO4)(OH)·3H2O → olivenite Cu2(AsO4)(OH) → strashimirite Cu8(AsO4)4(OH)4·5H2O → arhbarite Cu2Mg(AsO4)(OH)3. HSRS inolves the collection of Raman spectra as a function of the temperature. HSRS shows that the mineral euchroite decomposes between 125 and 175 °C with the loss of water. At 125 °C, Raman bands are observed at 858 cm?1 assigned to the ν1 AsO4 3? symmetric stretching vibration and 801, 822, and 871 cm?1 assigned to the ν3 AsO4 3? (A1) antisymmetric stretching vibrations. A distinct band shift is observed upon heating to 275 °C. At 275 °C, the four Raman bands are resolved at 762, 810, 837, and 862 cm?1. Further heating results in the diminution of the intensity in the Raman spectra, and this is attributed to sublimation of the arsenate mineral. HSRS is the most useful technique for studying the thermal stability of minerals, especially when only very small amounts of mineral are available.  相似文献   

16.
Raman spectroscopy complimented by infrared spectroscopy has been used to study the mineral hemimorphite from different origins. The Raman spectra show consistently similar spectra with only one sample showing additional bands due to the presence of smithsonite. Raman bands observed at 3510–3565 and 3436–3455 cm−1 are assigned to OH stretching vibrations. Using a Libowitzky type formula, these OH bands provide hydrogen bond distances of 0.2910, 0.2825, 0.2762 and 0.2716 pm. Water bending modes are observed in the Raman spectrum at 1633 cm−1. An intense Raman band at 930 cm−1 is attributed to SiO symmetric stretching vibration of the Si2O7 units. Raman bands observed at 451 and 400 cm−1are attributed to out-of-plane bending vibrations of the Si2O7 units. Raman bands at 330, 280, 168 and 132 cm−1 are assigned to ZnO and OZnO vibrations.  相似文献   

17.
The IR spectra (400–4000 cm?1) of hydrated and amorphous scandium phosphate and crystalline ScPO4 were recorded on samples prehented at 20–1100°C. The course of dehydration and crystallisation of amorphous scandium phosphate was recorded. The PO43?-ion in amorphous anhydrous phosphate shows C3v symmetry, while in the anhydrous crystalline product Vd site-symmetry occurs. Anhydrous crystalline ScPO4 spectrum belongs to the xeno-time-type group. The latter represents one from two groups of spectra of anhydrous rare earth phosphates.  相似文献   

18.
Pseudochalkogen Compounds. XVI. Infrared-spectroscopic Investigations of Cyanamidomonophosphates, [PO4?n(NCN)n]3? Infrared spectroscopic investigations of trisodium cyanamidomonophosphates of the general type Na3[PO4?n(NCN)n] · aq (n: 1, 2, 3) are reported. The vibrational spectra of the compounds are confirming very clearly the special position of cyanamidophosphates within the group of substituted phosphates: Cyanamidophosphates are characterized by a full participation of pseudochalkogen groups representing NCN substituents into the mesomeric system of the anions and an only slight shortening of the P? O distances in comparision to [PO4]3?. Characteristic frequencies between 970 and 1150 cm?1 are attributed to v(PO4?nNn)-stretching frequencies. A partial 15N labelling of the monocyanamidophosphate anion, [PO3NCN]3? leads to some splitting or shifting of frequencies being connected with vibrations of the NCN group; isolated v(P? N) stretching frequencies cannot be found.  相似文献   

19.
Synthesis and Spectroscopical Properties of the Mixed-Valent Di(phthalocyaninato)lanthanides(III) Green di(phthalocyaninato)lanthanide(III), [M(Pc)2] (M = rare earth metal ion: La‥(-Ce, Pm)‥Lu) is prepared by anodic oxidation of (nBu4N)[M(Pc2?)2] dissolved in CH2Cl2/(nBu4N)ClO4. The UV-Vis-NIR spectra show intense π-π* transitions at ? 15000 cm?1 and 31000 cm?1, typical for Pc2? ligands. Bands at ? 11000 cm?1 and 22000 cm?1 indicate the equal presence of a Pc? π-radical. The metal dependent NIR band between 4000 and 9000 cm?1 is characteristic for these mixed-valent complexes and assigned to an intervalence transition (b1 → a2; D4d symmetry). Most bands are shifted linearly with the MIII radius. In the IR and resonance Raman (r.r.) spectra the typical vibrations of the Pc? π-radical are dominant. These are essentially metal independent excepting the C? C and C? N vibrations of the inner (CN)8 ring. The sym. M? N stretching vibration between 141 (La) and 168 cm?1 (Lu) is selectively r.r.-enhanced when excited with 1064 nm.  相似文献   

20.
Two bands appear for each CN stretching and nitro deformation vibration in the infrared and Raman spectra of m-dinitrobenzene and m-dinitrobenzene-d4. The 907 cm?1 bending mode in the vibrational spectra of m-dinitrobenzene undergo 30 cm?1 upward shift upon d4 substitution. A normal coordinate analysis pointed out that the 937 cm?1 bending and 727 cm?1 CN stretching vibrations as well as 18b CD in-plane deformation are mixed to a great extent. The other nitro bending mode undergo also an inverse isotopic effect (2 cm?1 upward shift) due to coupling with the 18a CD in-plane deformation vibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号