首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We present the theory of breaking waves in nonlinear systems whose dynamics and spatial structure are described by multidimensional nonlinear hyperbolic wave equations. We obtain a general relation between systems of first-order quasilinear equations and nonlinear hyperbolic equations of higher orders, which, in particular, describe electromagnetic waves in a medium with nonlinear polarization of an arbitrary form. We use this approach to construct exact multivalued solutions of such equations and to study their spatial structure and dynamics. The results are generalized to a wide class of multidimensional equations such as d’Alembert equations, nonlinear Klein-Gordon equations, and nonlinear telegraph equations.  相似文献   

2.
In the present paper, we consider a general family of two‐dimensional wave equations, which represents a great variety of linear and nonlinear equations within the framework of the transformations of equivalence groups. We have investigated the existence problem of point transformations that lead mappings between linear and nonlinear members of particular families and determined the structure of the nonlinear terms of linearizable equations. We have also given examples about some equivalence transformations between linear and nonlinear equations and obtained exact solutions of nonlinear equations via the linear ones.  相似文献   

3.
4.
We investigate the nonlinear rotational dynamics of a molecular chain with quadrupole interaction in both the discrete and the continuous cases. Based on a system of nonlinear differential-difference equations, we obtain approximate equations describing the chain excitations and preserving the initial symmetry. We introduce an effective potential and normal coordinates, using which allows decoupling the system into linear and nonlinear parts. As a result of a strong anisotropy of the potential, narrow “valleys” occur in the angle plane. Motion along a valley corresponds to a softer interaction (nonlinear equations). Linear equations describe motion across a valley (hard interaction). We consider cases where the derived nonlinear equations reduce to the sine-Gordon equation. We find integrals of motion and exact solutions of our approximate equations. We uniformly describe the energy interval encompassing the domains of order, of orientational melting, and of rotational motion of the molecules in the chain.  相似文献   

5.
模糊非线性方程组 ,在模糊控制和现实生活中很普遍 .本文考虑一类模糊非线性方程组的性质 ,然后给出一种解法 .首先把模糊非线性方程组转变成非线性规划 ,再用非线性规划中的方法或软件来解 .  相似文献   

6.
We construct parametric families of small branching solutions to nonlinear differential equations of the nth order near branching points. We use methods of the analytical theory of branching solutions of nonlinear equations and the theory of differential equations with a regular singular point. We illustrate the general existence theorems with an example of a nonlinear differential equation in a certain magnetic insulation problem.  相似文献   

7.
We consider a discrete-time GALERKIN method for nonlinear evolution equations. We prove convergence properties of this method under various hypotheses. Moreover, we deal with iteration methods reducing the nonlinear GALERKIN equations to linear equations in finite dimensional spaces.  相似文献   

8.
We study the existence of multiple solutions for a class of even-order nonlinear elliptic equations with the Dirichlet boundary conditions. We also study the corresponding nonlinear Hamiltonian system of higher-order linear equations.  相似文献   

9.
提出了一种寻找变系数非线性方程精确解的新方法—相容方程法,利用该方法求出了变系数非线性KP方程的精确解,从而证明了这种方法是十分有效的.  相似文献   

10.
We develop a generalized conditional symmetry approach for the functional separation of variables in a nonlinear wave equation with a nonlinear wave speed. We use it to obtain a number of new (1+1)-dimensional nonlinear wave equations with variable wave speeds admitting a functionally separable solution. As a consequence, we obtain exact solutions of the resulting equations.  相似文献   

11.
We describe a pseudo-spectral numerical method to solve the systems of one-dimensional evolution equations for free surface waves in a homogeneous layer of an ideal fluid. We use the method to solve a system of one-dimensional integro-differential equations, first proposed by Ovsjannikov and later derived by Dyachenko, Zakharov, and Kuznetsov, to simulate the exact evolution of nonlinear free surface waves governed by the two-dimensional Euler equations. These equations are written in the transformed plane where the free surface is mapped onto a flat surface and do not require the common assumption that the waves have small amplitude used in deriving the weakly nonlinear Korteweg–de Vries and Boussinesq long-wave equations. We compare the solution of the exact reduced equations with these weakly nonlinear long-wave models and with the nonlinear long-wave equations of Su and Gardner that do not assume the waves have small amplitude. The Su and Gardner solutions are in remarkably close agreement with the exact Euler solutions for large amplitude solitary wave interactions while the interactions of low-amplitude solitary waves of all four models agree. The simulations demonstrate that our method is an efficient and accurate approach to integrate all of these equations and conserves the mass, momentum, and energy of the Euler equations over very long simulations.  相似文献   

12.
We consider problems for the nonlinear Boltzmann equation in the framework of two models: a new nonlinear model and the Bhatnagar-Gross-Krook model. The corresponding transformations reduce these problems to nonlinear systems of integral equations. In the framework of the new nonlinear model, we prove the existence of a positive bounded solution of the nonlinear system of integral equations and present examples of functions describing the nonlinearity in this model. The obtained form of the Boltzmann equation in the framework of the Bhatnagar-Gross-Krook model allows analyzing the problem and indicates a method for solving it. We show that there is a qualitative difference between the solutions in the linear and nonlinear cases: the temperature is a bounded function in the nonlinear case, while it increases linearly at infinity in the linear approximation. We establish that in the framework of the new nonlinear model, equations describing the distributions of temperature, concentration, and mean-mass velocity are mutually consistent, which cannot be asserted in the case of the Bhatnagar-Gross-Krook model.  相似文献   

13.
We obtain a sufficient condition for the absence of tangent transformations admitted by quasilinear differential equations of second order and a sufficient condition for the linear autonomy of the operators of the Lie group of transformations admitted by weakly nonlinear differential equations of second order. We prove a theorem concerning the structure of conservation laws of first order for weakly nonlinear differential equations of second order. We carry out the classification by first-order conservation laws for linear differential equations of second order with two independent variables.  相似文献   

14.
The modified method of simplest equation is powerful tool for obtaining exact and approximate solutions of nonlinear PDEs. These solutions are constructed on the basis of solutions of more simple equations called simplest equations. In this paper we study the role of the simplest equation for the application of the modified method of simplest equation. We follow the idea that each function constructed as polynomial of a solution of a simplest equation is a solution of a class of nonlinear PDEs. We discuss three simplest equations: the equations of Bernoulli and Riccati and the elliptic equation. The applied algorithm is as follows. First a polynomial function is constructed on the basis of a simplest equation. Then we find nonlinear ODEs that have the constructed function as a particular solution. Finally we obtain nonlinear PDEs that by means of the traveling-wave ansatz can be reduced to the above ODEs. By means of this algorithm we make a first step towards identification of the above-mentioned classes of nonlinear PDEs.  相似文献   

15.
Recently, Liao introduced a new method for finding analytical solutions to nonlinear differential equations. In this paper, we extend this idea to nonlinear systems. We study the system of nonlinear differential equations that governs nonlinear convective heat transfer at a porous flat plate and find functions that approximate the solutions by extending Liao’s Method of Directly Defining the Inverse Mapping (MDDiM).  相似文献   

16.
Group Classification and Exact Solutions of Nonlinear Wave Equations   总被引:1,自引:0,他引:1  
We perform complete group classification of the general class of quasi linear wave equations in two variables. This class may be seen as a broad generalization of the nonlinear d'Alembert, Liouville, sin/sinh-Gordon and Tzitzeica equations. In this way we derived a number of new genuinely nonlinear invariant models with high symmetry properties. In particular, we obtain four classes of nonlinear wave equations admitting five-dimensional invariance groups. Applying the symmetry reduction technique we construct multi-parameter families of exact solutions of these equations.  相似文献   

17.
Nonlinear diffusion filtering and wavelet/frame shrinkage are two popular methods for signal and image denoising. The relationship between these two methods has been studied recently. In this paper we investigate the correspondence between frame shrinkage and nonlinear diffusion.We show that the frame shrinkage of Ron-Shen?s continuous-linear-spline-based tight frame is associated with a fourth-order nonlinear diffusion equation. We derive high-order nonlinear diffusion equations associated with general tight frame shrinkages. These high-order nonlinear diffusion equations are different from the high-order diffusion equations studied in the literature. We also construct two sets of tight frame filter banks which result in the sixth- and eighth-order nonlinear diffusion equations.The correspondence between frame shrinkage and diffusion filtering is useful to design diffusion-inspired shrinkage functions with competitive performance. On the other hand, the study of such a correspondence leads to a new type of diffusion equations and helps to design frame-inspired diffusivity functions. The denoising results with diffusion-inspired shrinkages provided in this paper are promising.  相似文献   

18.
We describe nonlinear Galilei-invariant higher-order equations of Burgers and Korteweg-de Vries types. We study symmetry properties of these equations and construct new nonlinear extensions for the Galilei algebra AG(1, 1).  相似文献   

19.
We study the homogenization of the linear and nonlinear transport equations with oscillatory velocity fields. Two types of homogenized equations are derived. For general n-dimensional linear and nonlinear problems, we derive homogenized equations by introducing additional independent variables to represent the small scales. For the two-dimensional linear transport equations, we derive effective equations for the averaged quantities. Such equations take the form of either a degenerate non-local diffusion equation with memory or a higher order hyperbolic equation. To study the nonlinear transport equations we introduce the concept of two-scale Young measure and extend DiPerna's method to prove that it reduces to a family of Dirac measures.  相似文献   

20.
We justify a method for reducing a wide class of nonlinear equations (including several partial differential equations) to ordinary differential equations in locally convex spaces. The possibilities of this method are demonstrated by an example of a class of nonlinear hyperbolic partial differential equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号