首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
G-quadruplex structures are attractive targets for the development of anticancer drugs, as their formation in human telomere could impair telomerase activity, thus inducing apoptosis in cancer cells. In this work, a thiophene-containing dinuclear ruthenium(II) complex, [Ru2(bpy)4(H2bipt)]4+ {bpy = 2,2′-bipyridine, H2bipt = 2,5-bis[1,10]phenanthrolin[4,5-f]-(imidazol-2-yl)thiophene}, was prepared and the interaction between the complex and human telomeric DNA oligomers 5′-G3(T2AG3)3-3′ (HTG21) has been investigated by UV-Vis, fluorescence and circular dichroism (CD) spectroscopy, fluorescence resonance energy transfer (FRET) melting assay, polymerase chain reaction (PCR) stop assay, fluorescent intercalator displacement (FID) titrations, Job plot and color reaction studies. The results indicate that the complex can well induce and stabilize the formation of antiparallel G-quadruplex of telomeric DNA in the presence or absence of metal cations, and the ΔTm value of the G-quadruplex DNA treated with the complex was obtained to be 12.8 °C even at levels of 50-fold molar of duplex DNA (calf-thymus DNA), suggesting that the complex exhibits higher G-quadruplex DNA selectivity over duplex DNA. The complex shows high interaction ability with G-quadruplex DNA at (1.17 ± 0.12) × 107 M?1 binding affinity using a 2:1 [complex]/[quadruplex] binding mode ratio. A novel visual method has been developed here for making a distinction between G-quadruplex DNA and duplex DNA by our ruthenium complex binding hemin to form the hemin-G-quadruplex DNAzyme.  相似文献   

2.
A new nickel(II) complex, [Ni(o-van-L-met)(phen)(CH3OH)] (o-van-L-met = Schiff base derived from o-vanillin and l-methionine, phen = 1,10–phenanthroline), has been synthesized and characterized by elemental analyses, IR spectra, and single-crystal X-ray diffraction. The crystal structure shows nickel is six-coordinate in a distorted octahedral geometry. In this crystal, molecules form a 2-D plane structure via hydrogen bonds and π–π interactions. The interaction of the complex with calf thymus DNA (CT-DNA) was investigated by absorption, fluorescence, circular dichroism (CD), spectroscopies, and viscosity measurement. The complex binds to CT-DNA in an intercalative mode with a binding constant of (4.7 ± 0.5) × 104 M?1. The interaction of the complex with bovine serum albumin (BSA) was also studied by the multispectroscopic methods. Results illustrated that the nickel(II) complex can effectively quench the intrinsic fluorescence of BSA via a static quenching mechanism and cause conformational changes. The binding constant Kb was (6.3 ± 1.6) × 104 M?1 and the binding site number n was 0.96 ± 0.04; its bind site was located within subunit IIA of BSA.  相似文献   

3.
Abstract— At high phosphate-to-drug ratios acridine drugs intercalate between hydrogen bonded DNA base pairs causing significant changes in the physico-chemical properties of DNA. The determination of the nature of the strong (or primary) interaction between acridine drugs and DNA is of great importance for elucidating the mode of the biological action of the drugs. Nanosecond measurements have revealed a fast depolarization of the fluorescence of proflavine, one of the most extensively studied acridines, bound to DNA. The electronic structure of the complex, however, is not substantially altered during the lifetime of the excited singlet electronic state of the drug. Guanine has been shown to be responsible for the quenching of the proflavine fluorescence upon binding to DNA. A temperature-jump relaxation study has demonstrated a rather external complexation of this drug with the G-C base pairs; this complex, whose formation occurs in the strong binding region, is distinct from the weak electrostatic complex. The findings that the binding ability of a series of acridines correlates with their basicity and that the drug–binding behavior of methylated DNA is significantly different from that of DNA suggested that specific forces may be also involved in the drug–DNA binding in addition to hydrophobic forces. Recent experiments employing molecular complexes of acridines with nucleotides as model systems have provided strong support for the specificity of the drug-DNA interaction. Hydrogen bonding between the drug and reactive groups of the DNA bases that do not contribute directly to the stability of the helix may be involved in that interaction. The stoichiometry of the proflavine-guanosine 5′-phosphate complex is 1:1. Its association constant increases from 310 M-1 when proflavine is in its ground electronic state, to 1550 M-1, when proflavine is in its first excited singlet state. Thus, light absorbed by the drug alters its reactivity which, in turn, results in an appreciable increase in its ability to bind to the nucleotide. In view of the proposed importance of the drug–base interaction in explaining the mutagenic properties of acridine drugs and, in particular, of the proposed involvement of the G-C base pairs, this finding emphasizes the possible importance of drug photoexcitation in acridine mutagenesis; it also contributes to the elucidation of photodynamic action. X-ray diffraction studies have recently provided very interesting demonstrations of strong binding of 9-aminoacridine and of the phenanthridine drug ethidium bromide to adenine-uracil base pairs in the crystalline phase. The ability of photoexcited acridine drugs to inactivate viruses has been recently used for therapeutic purposes. The carcinogenic risk involved, however, is still under investigation.  相似文献   

4.
《Analytical letters》2012,45(6):1063-1070
Abstract

The potential of fluorescent polarization analysis as a method for detection of mismatch DNA hybridization was investigated. The dependency of DNA hybridization rate on salt concentration was surveyed. In greater than 0.1 M NaCl, the hybridization of probe and target DNA proceeds rapidly and the reaction is complete within 3 min. Furthermore, the hybridization of probe DNA and one mismatch target DNAs was investigated. It was successfully shown that even one mismatch could be detected using fluorescence polarization analysis if the mismatch position was on the base that pairs with the probe DNA at the 5′ terminus where fluorescein isothiocyanate (FITC) is attached.  相似文献   

5.
The tetrahydrocortisol–apolipoprotein A‐I complex specifically interacts with eukaryotic DNA isolated from rat liver. This interaction is highly cooperative and of a saturating nature. One DNA molecule binds about 54 molecules of the complex. Small‐angle X‐ray scattering has shown that hydrogen bonds between nitrous bases are destroyed and that single‐stranded structures are formed at the interaction of the tetrahydrocortisol–apolipoprotein A‐I complex with eukaryotic DNA. The most probable site of binding the tetrahydrocortisol–apolipoprotein A‐I complex with DNA is the sequence of the CC(GCC)n type entering the structure of many genes, among them the structure of the human apolipoprotein A‐I gene. Oligonucleotide of this type has been synthesized. The association constant (Kass) of its complexation was shown to be 1.66 · 106 M?1. Substitution of tetrahydrocortisol for cortisol in the complex results in a considerable decrease of Kass. IR‐spectroscopy study has shown that the interaction of tetrahydrocortisol with oligonucleotide CC(GCC)3–5 is accompanied by the formation of hydrogen bonds via the CO‐NH, PO2, and OH groups of desoxycytidinephosphate. The tetrahydrocortisol–apolipoprotein A‐I complex alters the DNA secondary structure formed at the interaction with the hormone, causing the structural transition “order → tangle.” It is assumed that in the GC‐pairs of the given DNA sequence, tetrahydrocortisol initiates the rupture of hydrogen bonds, while the hydrophobic interactions between nitrous bases and apoA‐I intensify this process. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

6.
A new copper(II) complex [Cu(adefovir)2Cl2], where adefovir = adefovir dipivoxil drug, was synthesized and characterized by using different physicochemical methods. Binding interaction of this complex with calf thymus DNA (ct-DNA) has been investigated by multi-spectroscopic techniques and molecular modeling study. The complex displays significant binding properties of ct-DNA. The results of fluorescence and UV–vis absorption spectroscopy indicated that, this complex interacted with ct-DNA in a groove-binding mode, and the binding constant was 4.3(±0.2) × 104 M?1. The fluorimeteric studies showed that the reaction between the complex and ct-DNA is exothermic (ΔH = 73.91 kJ M?1; ΔS = 357.83 J M?1 K?1). Furthermore, the complex induces detectable changes in the CD spectrum of ct-DNA and slightly increases its viscosity which verified the groove-binding mode. The molecular modeling results illustrated that the complex strongly binds to the groove of DNA by relative binding energy of the docked structure ?5.74 kcal M?1. All experimental and molecular modeling results showed that the Cu(II) complex binds to DNA by a groove-binding mode.  相似文献   

7.
An intramolecular charge transfer fluorescence probe of 4′-N,N-dimethylamino-4-amino-chalcone(DMAC) exhibits characteristics clearly correlated with the polarity of solvents. The interaction of this fluorescence probe with calf thymus DNA has been investigated. Generally, DMAC bound to DNA shows marked changes in fluorescence and absorbance properties compared to the spectral characteristics of the free form in solution phase. In the presence of DNA the fluorescence intensity of DMAC is greatly increased with a large bathochromic shift of excitation and emission wavelengths. A hypochromism in absorption spectrum was also observed. The absorption and fluorescence spectra, salt concentration effect, and KI quenching experiments demonstrate that DMAC molecule as an intercalator is inserted into the base-stacking domain of DNA double helix, and the interaction of the nucleobases with DMAC molecule causes the increase of fluorescence intensity and hypochromism in absorption spectrum. The intrinsic binding constant and the binding site number were estimated to be 7.04 × 106 mol L−1 in base pairs and 0.065, respectively. The I/I0 vs DNA concentration plot shows a linear range covering 1.98 × 10−6 to 2.08 × 10−4 mol L−1 in base pairs which can be used for determining DNA with a detection limit of 6.0 × 10−7 mol L−1 in base pairs (0.6 μg ml−1).  相似文献   

8.
Two iron(II) complexes, [FeII(pytBuN3)2](FeCl4) (1) and [FeII(pytBuMe2N3)Cl2] (2), with sterically constrained pytBuN3 and pytBuMe2N3 chelate ligands (pytBuN3 = 2,6-bis-(aldiimino)pyridyl; pytBuMe2N3 = 2,6-bis-(ketimino)pyridyl), have been synthesized and characterized by elemental analysis, IR, UV–vis spectra, and preliminary X-ray single-crystal diffraction. The latter revealed that Fe(II) in 1 is six-coordinate by six nitrogen donors from two bisiminopyridines in a distorted octahedron. Complex 2 reacts with thiourea with a second-order rate constant k2 = (2.50 ± 0.05) × 10?3 M?1 s?1 at 296 K, and the reaction seemed to be slow. In a similar way, the interaction of 2 and DNA was studied by fluorescence and absorption spectroscopy. The results revealed that 2 caused fluorescence quenching of DNA through a dynamic quenching procedure. The binding constants KA, Kapp, and KSV as well as the number of binding sites between 2 and DNA were determined.  相似文献   

9.
Three new nickel(II) complexes formulated as [Ni2(1,3‐tpbd)(diimine)2(H2O)2]4+ [1,3‐tpbd = N,N,N′,N′‐tetrakis(2‐pyridylmethyl)benzene‐1,3‐diamine, where diimine is an N,N‐donor heterocyclic base like 1,10‐phenanthroline (phen),2,2′‐bipyridine (bpy), 4,5‐diazafluoren‐9‐one (dafo)], have been synthesized and structurally characterized by X‐ray crystallography: [Ni2(1,3‐tpbd)(phen)2(H2O)2]4+ (1), [Ni2(1,3‐tpbd)(bpy)2(H2O)2]4+(2) and [Ni2(1,3‐tpbd)(dafo)2(H2O)2]4+ (3). Single‐crystal diffraction reveals that the metal atoms in the complexes are all in a distorted octahedral geometry and in a trans arrangement around 1,3‐tpbd ligand. The interactions of the three complexes with calf thymus DNA (CT‐DNA) have been investigated by UV absorption, fluorescence spectroscopy, circular dichroism and viscosity. The apparent binding constant (Kapp) values are calculated to be 1.91 × 105 m ?1 for 1, 1.18 × 105 m ?1 for 2, and 1.35 × 105 m ?1 for 3, following the order 1 > 3 > 2. The higher DNA binding affinity of 1 is due to the involvement in partial insertion of the phen ring between the DNA base pairs. A decrease in relative viscosities of DNA upon binding to 1–3 is consistent with the DNA binding affinities. These complexes efficiently display oxidative cleavage of supercoiled DNA in the presence of H2O2 (250 µ m ), with 3 exhibiting the highest nuclease activity. The rate constants for the conversion of supercoiled to nicked DNA are 5.28 × 10?5 s?1 (for 1), 6.67 × 10?5 s?1 (for 2) and 1.39 × 10?4 s?1 (for 3), also indicating that complex 3 shows higher catalytic activity than 1 and 2. Here the nuclease activity is not readily correlated to binding affinity. The inhibitory effect of complexes 1–3 on thioredoxin reductase has also been examined. The IC50 values are calculated to be 26.54 ± 0.57, 31.03 ± 3.33 and 8.69 ± 2.54 µ m , respectively, showing a more marked inhibitory effect on thioredoxin reductase by complex 3 than the other two complexes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A new cobalt (II) coordination compound was synthesized using proton transfer mechanism. The reaction between CoCl2·2H2O, Salicylic acid (H2Sal) and acridine (Acr) gave a new coordination compound formulated as (HAcr)4[Co(Sal)3], which was characterized by elemental analysis, NMR, IR and UV/Vis spectroscopies. The interaction of this complex with DNA has been investigated in vitro using UV absorption, fluorescence spectroscopy, viscosity measurements and gel electrophoresis methods. The intrinsic binding constant has been estimated to be 5.8 × 105 M?1 using UV absorption. The interaction of DNA–Co (II) complex caused quenching in fluorescence. The binding constant, the number of binding site and Stern–Volmer quenching constant have been calculated to be 7.7 × 104 M?1, 1.143 and 1.5 × 104 Lmol?1, respectively. The increase in the viscosity of DNA with increasing the concentration of the Co (II) complex and the observations of other experiments suggest that the cobalt (II) complex binds to DNA by partial intercalation binding mode. Furthermore, the interaction of DNA–Co (II) complex was confirmed using gel electrophoresis studies. Moreover, molecular docking technique predicted partial intercalation binding mode for the complex.  相似文献   

11.
12.
A new binuclear zinc(II) complex bridged by μ-oxalate, and end-capped with 2,2′-bipyridine (bpy), [Zn2(ox)(bpy)4](ClO4)2 · H2O, has been synthesized and characterized by elemental analyses, molar conductance, IR, and electronic spectra and single-crystal X-ray diffraction. The single-crystal X-ray analysis reveals that the [Zn2(ox)(bpy)4]2+ cation has two zinc(II) centers bridged by a planar bis(bidentate) oxalate group with Zn···Zn distance of 5.482(3) Å; each zinc(II) is in a distorted octahedral environment. The crystal structure is stabilized by non-classical C–H···O hydrogen bonds and π–π stacking interactions to form a 3-D supramolecular structure. The interaction of the complex with calf-thymus DNA (CT-DNA) was explored by using electronic and fluorescence spectra and viscosity measurements. The results reveal that the complex intercalates with CT-DNA with intrinsic binding constant of 4.1 × 104 M?1.  相似文献   

13.
Herba Ecliptae (HE) is a typical Chinese herbal medicine used in China for 1500 years. In the study, HE was extracted by various solvents to prepare five HE extracts. They were observed to possess a protective effect against ×OH‐induced DNA damage, and scavenging effects on ×OH radical, ×O2? radical, DPPH×(1,1‐diphenyl‐2‐picrylhydrazyl) radical, and ABTS×+ (2,2′‐azino‐bis(3‐ethyl‐benzothiazoline‐6‐sulfonic acid) radical, and reduce Cu2+ ion. The contents of total phenolics and wedelolactone in five extracts were determined respectively using Folin‐Ciocalteu method and HPLC method. To identify which chemical component can be responsible for its effects, the correlation graphs between chemical contents and antioxidant abilities (1/IC50 values) were plotted to calculate correlation coefficients (R values). Finally, MTT assay revealed that two HE extracts could effectively protect mesenchymal stem cells (MSCs) against ×OH‐induced damage at 3‐30 μg/mL. On the basis of mechanistic analysis, we concluded that: (i) HE can effectively protect against ×OH‐induced damages to DNA and MSCs, thereby HE may have a therapeutic potential in MSCs transplantation or prevention of many diseases; (ii) the effects can be mainly attributed to total phenolics (R = 0.678) especially wedelolactone (R = 0.618); (iii) they exert antioxidant action via hydrogen atom transfer (HAT) and sequential electron proton transfer (SEPT) mechanisms.  相似文献   

14.
Photolabile protecting groups are a versatile tool to trigger reactions by light irradiation. In this study, we have investigated the influence of the absolute configuration of the 1‐(2‐nitrophenyl)ethyl (NPE) cage group on a 15‐base‐pair duplex DNA. Using UV melting, we determined the global stability of the unmodified and the selectively (S)‐ and (R)‐NPE‐modified DNA sequences, respectively. We observe a differently destabilizing effect for the two NPE stereoisomers on the global stability. Analysis of the temperature dependence of imino proton exchange rates measured by NMR spectroscopy reveals that this effect can be attributed to decreased base pair stabilities of the caged and the 3′‐neighbouring base pair, respectively. Furthermore, our NMR based structural models of the modified duplexes provide a structural basis for the distinct effect of the (S)‐ and the (R)‐NPE group.  相似文献   

15.
A new Ni(II) complex, namely [Ni2(OAc)L]·ClO4·H2O, was synthesized by [2 + 2] cyclo-condensation between 2,6-diformyl-4-methylphenol and N,N-bis(3-aminopropyl)-4-methoxybenzylamine (amba) in the presence of nickel(II) and characterized by spectroscopy, elemental analysis, and X-ray single crystal diffraction. The interactions of the complex with DNA have been measured by spectroscopy and viscosity measurements. Absorption spectroscopic investigation reveals intercalative binding of the Ni(II) complex with DNA, with a binding constant of 2.6 × 104 M−1. Fluorescence spectroscopy shows that the Ni(II) complex can displace ethidium bromide and bind to DNA, with a quenching constant of 7.57 × 103 M−1. The appearance of increased CD bands near 245 and 275 nm gives evidence for effective complex DNA binding. The agarose gel electrophoresis studies show that the complex displays effective DNA cleavage activity in the absence of any external agents.  相似文献   

16.
使用紫外和荧光光谱法研究了萘普生和酵母DNA之间的相互作用。酵母DNA对萘普生的荧光存在强烈的猝灭作用,其作用方式随DNA浓度的变化而发生转变。用Stern-Volmer方程与Scatchard方程两种方法得到相同结果:在较低的DNA浓度下,萘普生与DNA间的作用较弱,而在较高DNA浓度时,萘普生与DNA的作用较强,键合位点数也随着酵母DNA浓度的升高而在临界酵母DNA浓度100 mmol/L附近出现转变。紫外光谱、离子强度的影响和I-猝灭等研究表明,DNA浓度的变化并不改变两者间的作用方式,它们之间始终是一种沟槽作用模式。  相似文献   

17.
An electrically neutral cobalt complex, [Co(GA)2(phen)] (GA=glycollic acid, phen=1,10‐phenathroline), was synthesized and its interactions with double‐stranded DNA (dsDNA) were studied by using electrochemical methods on a glassy carbon electrode (GCE). We found that [Co(GA)2(phen)] could intercalate into the DNA duplex through the planar phen ligand with a high binding constant of 6.2(±0.2)×105 M ?1. Surface studies showed that the cobalt complex could electrochemically accumulate within the modified dsDNA layer, rather than within the single‐stranded DNA (ssDNA) layer. Based on this feature, the complex was applied as a redox‐active hybridization indicator to detect 18‐base oligonucleotides from the CaMV35S promoter gene. This biosensor presented a very low background signal during hybridization detection and could realize the detection over a wide kinetic range from 1.0×10?14 M to 1.0×10?8 M , with a low detection limit of 2.0 fM towards the target sequences. The hybridization selectivity experiments further revealed that the complementary sequence, the one‐base‐mismatched sequence, and the non‐complementary sequence could be well‐distinguished by the cobalt‐complex‐based biosensor.  相似文献   

18.
The electronic excited states populated upon absorption of UV photons by DNA are extensively studied in relation to the UV‐induced damage to the genetic code. Here, we report a new unexpected relaxation pathway in adenine–thymine double‐stranded structures (AT)n. Fluorescence measurements on (AT)n hairpins (six and ten base pairs) and duplexes (20 and 2000 base pairs) reveal the existence of an emission band peaking at approximately 320 nm and decaying on the nanosecond time scale. Time‐dependent (TD)‐DFT calculations, performed for two base pairs and exploring various relaxation pathways, allow the assignment of this emission band to excited states resulting from mixing between Frenkel excitons and adenine‐to‐thymine charge‐transfer states. Emission from such high‐energy long‐lived mixed (HELM) states is in agreement with their fluorescence anisotropy (0.03), which is lower than that expected for π–π* states (≥0.1). An increase in the size of the system quenches π–π* fluorescence while enhancing HELM fluorescence. The latter process varies linearly with the hypochromism of the absorption spectra, both depending on the coupling between π–π* and charge‐transfer states. Subsequently, we identify the common features between the HELM states of (AT)n structures with those reported previously for alternating (GC)n: high emission energy, low fluorescence anisotropy, nanosecond lifetimes, and sensitivity to conformational disorder. These features are also detected for calf thymus DNA in which HELM states could evolve toward reactive π–π* states, giving rise to delayed fluorescence.  相似文献   

19.
Molecular dynamics simulations were performed to investigate GC and AT base opening events in DNA. Calculated equilibrium constants between the base open (or flipped) and closed states were shown to be in good agreement with experimental data from NMR imino proton exchange experiments. Analysis of the computed results indicates that the equilbrium constants are dominated by the opening of the A and G bases in the AT and GC base pairs, respectively. Thus, the present results predict that NMR imino proton exchange experiments of base opening are primarily monitoring the opening of purine bases.  相似文献   

20.
Abstract

The stepwise complex formation between 2-amino-2-hydroxymethyl-1,3-propanediol (TRIS) with Co(II) and Mn(II) was studied by potentiometry at constant ionic strength 2.0 M (NaClO4) and T = (25.0 ± 0.1)°C, from pH measurements. Data of average ligand number (Bjerrum's function) were obtained from such measurements followed by integration to obtain Leden's function, F 0(L). Graphical treatment and matrix solution of simultaneous equations have shown two overall stability constants of mononuclear stepwise complexes for the Mn(II)/TRIS system (β1 = (5.04 ± 0.02) M?1 and β2 = (5.4 ± 0.5) M?2) and three for the Co(II)/TRIS system (β1 = (1.67 ± 0.02) × 102 M?1, β2 = (7.01 ± 0.05) × 103 M?2 and β3 = (2.4 ± 0.4) × 104 M?3). Slow spontaneous oxidation of Co(II) solutions by dissolved oxygen, accelerated by S(IV), occurs in a buffer solution TRIS/HTRIS+ 0.010/0.030 M, with a synergistic effect of Mn(II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号