首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nested non-linear multigrid algorithm is developed to solve the Navier–Stokes equations which describe the steady incompressible flow past a sphere. The vorticity–streamfunction formulation of the Navier–Stokes equations is chosen. The continuous operators are discretized by an upwind finite difference scheme. Several algorithms are tested as smoothing steps. The multigrid method itself provides only a first-order-accurate solution. To obtain at least second-order accuracy, a defect correction iteration is used as outer iteration. Results are reported for Re = 50, 100, 400 and 1000.  相似文献   

2.
A direct numerical scheme is developed to study the temporal amplification of a 2D disturbance in plane Poiseuille flow. The transient non-linear Navier–Stokes equations are applied in a region of wavelength moving with the wave propagation speed. The complex amplitude involved in the perturbation functions is considered as the initial input of the non-linear stability equations. In this study a fully implicit finite difference scheme with five points in the flow direction and three points in the normal direction is developed so that numerical simulation of the amplification of a two-dimensional temporal disturbance in plane Poiseuille flow can be investigated. The growth and decay of the disturbance with time are presented and neutral stability curves which are in good agreement with existing solutions can be determined. The critical conditions as a function of the amplitude A0 of the disturbance are presented. Fixing the wavelength, the Navier–Stokes equations are solved up to Re=10,000 a friction factor increasing with Reynolds number is observed. The 2D non-linear behaviour of the streamfunction, vorticity and velocity components at Re=10,000 are also exhibited. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
The AUFS scheme has been presented for solving the Euler equations [Sun, M., Takayama, K., 2003. An artificially upstream flux vector splitting scheme for the Euler equations. Journal of Computational Physics, 189, 305–329]. An extension of this high resolution scheme-based on upwind numerical methods has been developed to calculate a two-dimensional hypersonic viscous flowfield in thermochemical non-equilibrium. The time-dependent Navier–Stokes governing equations are computed by using a multi-block finite volume technique on a structured mesh. The convective fluxes at the interfaces are evaluated using a flux vector splitting (FVS) method with a second-order reconstruction of the interface values and the viscous terms are discretised by second-order central differences. A better evaluation of aerodynamic parameters are obtained with this AUFS scheme and they are also compared to those obtained by previous works. The freestream flow conditions of these computations correspond to high-enthalpy flows with a Mach number range between 6.4 and 25.9. The obtained numerical results indicate that the AUFS scheme is accurate, robust, and efficient for the calculation of hypersonic flow.  相似文献   

4.
The time-dependent Navier–Stokes equations and the energy balance equation for an incompressible, constant property fluid in the Boussinesq approximation are solved by a least-squares finite element method based on a velocity–pressure–vorticity–temperature–heat-flux ( u –P–ω–T– q ) formulation discretized by backward finite differencing in time. The discretization scheme leads to the minimization of the residual in the l2-norm for each time step. Isoparametric bilinear quadrilateral elements and reduced integration are employed. Three examples, thermally driven cavity flow at Rayleigh numbers up to 106, lid-driven cavity flow at Reynolds numbers up to 104 and flow over a square obstacle at Reynolds number 200, are presented to validate the method.  相似文献   

5.
A three-dimensional hydrodynamic model has been developed for turbulent flows with free surface. In the horizontal xy-plane, a boundary-fitted curvilinear co-ordinate system is adopted, while in the vertical direction, a σ-co-ordinate transformation is used to represent the free surface and bed topography or lower boundary. Using the finite volume method, the convection terms are discretized using Roe's second-order-accurate scheme. The governing equations are solved in a collocated grid system by a fractional three-step implicit algorithm that has been developed to handle the velocity–pressure–depth coupling problem of free surface incompressible fluid flows. The present study is the extension of previous work to three-dimensional turbulent flows. The model has been applied to three test cases. Comparison with available data shows that the model developed is successful, and is valuable to engineering application. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
A spectral element algorithm for solution of the unsteady incompressible Navier–Stokes and scalar (species/heat) transport equations is developed using the algebraic factorisation scheme. The new algorithm utilises Nth order Gauss–Lobatto–Legendre points for velocity and the scalar, while (N-2)th order Gauss–Legendre points are used for pressure. As a result, the algorithm does not require inter-element continuity for pressure and pressure boundary conditions on solid surfaces. Implementations of the algorithm are performed for conforming and non-conforming grids. The latter is accomplished using both the point-wise matching and integral projection methods, and applied for grids with both polynomial and geometric non-conformities. Code validation cases include the unsteady scalar convection equation, and Kovasznay flow in two- and three-dimensional domains. Using cases with analytical solutions, the algorithm is shown to achieve spectral accuracy in space and second-order accuracy in time. The results for the Boussinesq approximation for buoyancy-driven flows, and the species mixing in a continuous flow micro-mixer are also included as examples of applications that require long-time integration of the scalar transport equations.  相似文献   

7.
A Cartesian cut cell solver with solution‐based adaptive mesh refinement is developed for simulating viscous, incompressible flows with arbitrary complex geometries. The cut cells are automatically generated using Volume CAD (VCAD), a framework for storing geometric and material attribute data. Unlike earlier cut cell methods, this solver organizes the cutting patterns into only six categories and further subdivides the resulting pentagon into two quadrilaterals, such that mesh data can be stored by uniform data structure and the post‐processing of flow data can be handled conveniently. A novel method is proposed to treat minuscule cut cells without the process of cell merging. A collocated finite volume method, which can be used even when multiple cell shapes and orthogonal and non‐orthogonal grids exist in the decomposition, is employed to discretize the Navier–Stokes equations. A modified SIMPLE‐based smoothing pressure correction scheme is applied in this cut cell method to suppress checkerboard pressure oscillations caused by collocated arrangement. The solver is first used to simulate a channel flow to demonstrate its calculation accuracy expressed with L1 and L norm errors and then the method is utilized to solve three benchmark problems of flow and heat transfer within irregular domains to verify its feasibility, efficiency, accuracy and potential in engineering applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
A fourth‐order compact finite difference scheme on the nine‐point 2D stencil is formulated for solving the steady‐state Navier–Stokes/Boussinesq equations for two‐dimensional, incompressible fluid flow and heat transfer using the stream function–vorticity formulation. The main feature of the new fourth‐order compact scheme is that it allows point‐successive overrelaxation (SOR) or point‐successive underrelaxation iteration for all Rayleigh numbers Ra of physical interest and all Prandtl numbers Pr attempted. Numerical solutions are obtained for the model problem of natural convection in a square cavity with benchmark solutions and compared with some of the accurate results available in the literature. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
10.
An accurate and robust Navier–Stokes procedure to predict the complex flow about an aerofoil has been developed. Much improvement over existing methods is achieved in various aspects of the solution procedure. The computational grid generated by conformal mapping, which is not only orthogonal but aligned with the inviscid streamlines, keeps the equations simple and minimizes the error due to false diffusion. Formal second-order accuracy is ensured by employing the QUICK scheme for the convective derivatives in the full Navier–Stokes and turbulence transport equations. To treat the separated region properly and to better resolve the flow field in the wake, the two-layer k–ε turbulence model is incorporated. The onset of transition is triggered in a unique fashion to warrant the smooth transition to turbulent flow. Sample calculations for various aerofoil sections show that the prediction is improved substantially over those by existing methods. The details of the flow extending to the wake, such as the surface pressure distribution, CLmax, the velocity fields and the Reynolds stress profiles, are found to be in excellent agreement with the data. © 1997 John Wiley & Sons, Ltd.  相似文献   

11.
A numerical model is developed for calculating the two-dimensional, unsteady, incompressible and turbulent flow within the rotating impeller and stationary volute of an industrial centrifugal pump. The objective is the investigation and comprehension of the instantaneous behaviour of centrifugal pumps, aiming at the reduction of vibrations, radial forces and hydraulic noise. The computation is performed within a blade-to-blade streamtube for the impeller and a tube normal to the axis of rotation for the volute. The equations to be solved are the unsteady Reynolds-averaged Navier–Stokes equations along with the continuity equation and the unsteady κ–ϵ equations for turbulence modelling. The finite volume method is applied for space discretization and an implicit scheme for time discretization. A multidomain overlapping grid technique is used for matching together the relative flow field calculated within the rotating impeller and the absolute one calculated within the stationary volute. In this way the impeller and volute interaction is directly taken into account. The numerical model is validated for a centrifugal pump of N q=32 under design flow conditions. Comparisons between calculation and measurements show fairly good agreement.  相似文献   

12.
A computational method has been developed to predict the turbulent Reynolds stresses and turbulent heat fluxes in ducts by different turbulence models. The turbulent Reynolds stresses and other turbulent flow quantities are predicted with a full Reynolds stress model (RSM). The turbulent heat fluxes are modelled by a SED concept, the GGDH and the WET methods. Two wall functions are used, one for the velocity field and one for the temperature field. All the models are implemented for an arbitrary three‐dimensional channel. Fully developed condition is achieved by imposing cyclic boundary conditions in the main flow direction. The numerical approach is based on the finite volume technique with a non‐staggered grid arrangement. The pressure–velocity coupling is handled by using the SIMPLEC‐algorithm. The convective terms are treated by the van Leer scheme while the diffusive terms are handled by the central‐difference scheme. The hybrid scheme is used for solving the ε equation. The secondary flow generation using the RSM model is compared with a non‐linear kε model (non‐linear eddy viscosity model). The overall comparison between the models is presented in terms of the friction factor and Nusselt number. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
A first-order non-conforming numerical methodology, Separation method, for fluid flow problems with a 3-point exponential interpolation scheme has been developed. The flow problem is decoupled into multiple one-dimensional subproblems and assembled to form the solutions. A fully staggered grid and a conservational domain centred at the node of interest make the decoupling scheme first-order-accurate. The discretization of each one-dimensional subproblem is based on a 3-point interpolation function and a conservational domain centred at the node of interest. The proposed scheme gives a guaranteed first-order accuracy. It is shown that the traditional upwind (or exponentially weighted upstream) scheme is less than first-order-accurate. The pressure is decoupled from the velocity field using the pressure correction method of SIMPLE. Thomas algorithm (tri-diagonal solver) is used to solve the algebraic equations iteratively. The numerical advantage of the proposed scheme is tested for laminar fluid flows in a torus and in a square-driven cavity. The convergence rates are compared with the traditional schemes for the square-driven cavity problem. Good behaviour of the proposed scheme is ascertained.  相似文献   

14.
A numerical method is developed for solving the 3D, unsteady, incompressible Navier–Stokes equations in curvilinear coordinates containing immersed boundaries (IBs) of arbitrary geometrical complexity moving and deforming under forces acting on the body. Since simulations of flow in complex geometries with deformable surfaces require special treatment, the present approach combines a hybrid immersed boundary method (HIBM) for handling complex moving boundaries and a material point method (MPM) for resolving structural stresses and movement. This combined HIBM & MPM approach is presented as an effective approach for solving fluid–structure interaction (FSI) problems. In the HIBM, a curvilinear grid is defined and the variable values at grid points adjacent to a boundary are forced or interpolated to satisfy the boundary conditions. The MPM is used for solving the equations of solid structure and communicates with the fluid through appropriate interface‐boundary conditions. The governing flow equations are discretized on a non‐staggered grid layout using second‐order accurate finite‐difference formulas. The discrete equations are integrated in time via a second‐order accurate dual time stepping, artificial compressibility scheme. Unstructured, triangular meshes are employed to discretize the complex surface of the IBs. The nodes of the surface mesh constitute a set of Lagrangian control points used for tracking the motion of the flexible body. The equations of the solid body are integrated in time via the MPM. At every instant in time, the influence of the body on the flow is accounted for by applying boundary conditions at stationary curvilinear grid nodes located in the exterior but in the immediate vicinity of the body by reconstructing the solution along the local normal to the body surface. The influence of the fluid on the body is defined through pressure and shear stresses acting on the surface of the body. The HIBM & MPM approach is validated for FSI problems by solving for a falling rigid and flexible sphere in a fluid‐filled channel. The behavior of a capsule in a shear flow was also examined. Agreement with the published results is excellent. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Peyret (J. Fluid Mech., 78, 49–63 (1976)) and others have described artificial compressibility iteration schemes for solving implicit time discretizations of the unsteady incompressible Navier-Stokes equations. Such schemes solve the implicit equations by introduing derivatives with respect to a pseudo-time variable τ and marching out to a steady state in τ. The pseudo-time evolution equation for the pressure p takes the form ?p/? = ?a2??.u, where a is an artificial compressibility parameter and u is the fluid velocity vector. We present a new scheme of this type in which convergence is accelerated by a new procedure for setting a and by introducing an artificial bulk viscosity b into the momentum equation. This scheme is used to solve the non-linear equations resulting from a fully implicit time differencing scheme for unsteady incompressible flow. We find that the best values of a and b are generally quite different from those in the analogous scheme for steady flow (J. D. Ramshaw and V. A. Mousseau, Comput. Fluids, 18, 361–367 (1990)), owing to the previously unrecognized fact that the character of the system is profoundly altered by the pressence of the physical time derivative terms. In particular, a Fourier dispersion analysis shows that a no longer has the significance of a wave speed for finite values of the physical time step δt,. Inded, if on sets a ? |u| as usual, the artificial sound waves cease to exist when δt is small and this adversely affects the iteration convergence rate. Approximate analytical expressions for a and b are proposed and the benefits of their use relative to the conventional values a ~ |u| and b = 0 are illustrated in simple test calculations.  相似文献   

16.
The convergence and accuracy characteristics of the preconditioned incompressible Euler and Navier–Stokes equations are studied. An object-oriented C++ numerical code has been developed for solving the inviscid and viscous, steady, incompressible flows problems. The code is based on the cell-centred finite volume method. In this scheme, two-dimensional incompressible Euler and Navier–Stokes equations are modified by a robust artificial compressibility (AC) and a local preconditioning matrix of pressure-sensor type. The preconditioned equations are solved with the Jameson's numerical approach, i.e. artificial dissipation and artificial viscosity terms under the form of a fourth- and second-order derivative, respectively. An explicit four-stage Runge–Kutta integration algorithm is applied to obtain the steady-state condition. The computed results include the steady-state solution of flow past the NACA-hydrofoils and a circular cylinder in free stream, for which the numerical results are compared with numerical works of other researchers. Good agreement is observed. The effects of AC parameter, artificial viscosity and dissipation factor, and local preconditioning coefficient on convergence rate and solution accuracy are tested by computing flow over the NACA0012 hydrofoil. In addition, some important design criteria of a preconditioner, such as stiffness reduction, hyperbolicity, symmetrisability, accuracy preservation for M → 0, and M-property have been examined analytically.  相似文献   

17.
An implicit unfactored method for the coupled solution of the compressible Navier–Stokes equations with two-equation turbulence models is presented. Both fluid-flow and turbulence transport equations are discretized by a characteristics-based scheme. The implicit unfactored method combines Newton subiterations and point-by-point Gauss–Seidel subrelaxation. Implicit-coupled and -decoupled strategies are compared for their efficiency in the solution of the Navier–Stokes equations in conjunction with low-Re two-equation turbulence models. Computations have been carried out for the flow over an axisymmetric bump using the k–ϵ and k–ω models. Comparisons have been obtained with experimental data and other numerical solutions. The present study reveals that the implicit unfactored implementation of the two-equation turbulence models reduces the computing time and improves the robustness of the CFD code in turbulent compressible flows. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
A mathematical model of turbulent density-driven flows is presented and is solved numerically. A form of the k–? turbulence model is used to characterize the turbulent transport, and both this non-linear model and a sediment transport equation are coupled with the mean-flow fluid motion equations. A partitioned, Newton–Raphson-based solution scheme is used to effect a solution. The model is applied to the study of flow through a circular secondary sedimentation basin.  相似文献   

19.
A general analysis has been developed to study the combined effect of the free convective heat and mass transfer on the steady three-dimensional laminar boundary layer flow over a stretching surface. The flow is subject to a transverse magnetic field normal to the plate. The governing three-dimensional partial differential equations for the present case are transformed into ordinary differential equation using three-dimensional similarity variables. The resulting equations, are solved numerically by applying a fifth order Runge-Kutta-Fehlberg scheme with the shooting technique. The effects of the Magnetic field Parameter M, buoyancy parameter N, Prandtl number Pr and Schmidt number Sc are examined on the velocity, temperature and concentration distributions. Numerical data for the skin-friction coefficients, Nusselt and Sherwood numbers have been tabulated for various parametric conditions. The results are compared with known from the literature.  相似文献   

20.
Conjunctive modelling of free/porous flows provides a powerful and cost‐effective tool for designing industrial filters used in the process industry and also for quantifying surface–subsurface flow interactions, which play a significant role in urban flooding mechanisms resulting from sea‐level rise and climate changes. A number of well‐established schemes are available in the literature for simulation of such regimes; however, three‐dimensional (3D) modelling of such flow systems still presents numerical and practical challenges. This paper presents the development of a fully 3D, transient finite element model for the prediction and quantitative analyses of the hydrodynamic behaviour encountered in industrial filtrations and environmental flows represented by coupled flows. The weak‐variational formulation in this model is based on the use of C0 continuous equal‐order Lagrange polynomial functions for velocity and pressure fields represented by 3D hexahedral finite elements. A mixed UVWP finite element scheme based on the standard Galerkin technique satisfying the Ladyzhenskaya–Babuska–Brezzi stability criterion through incorporation of an artificial compressibility term in the continuity equation has been employed for the solution of coupled partial differential equations. We prove that the discretization generates unified stabilization for both the Navier–Stokes and Darcy equations and preserves the geometrical flexibility of the computational grids. A direct node‐linking procedure involving the rearrangement of the global stiffness matrix for the interface elements has been developed by the authors, which is utilized to couple the governing equations in a single model. A variety of numerical tests are conducted, indicating that the model is capable of yielding theoretically expected and accurate results for free, porous and coupled free/porous problems encountered in industrial and environmental engineering problems representing complex filtration (dead‐end and cross‐flow) and interacting surface–subsurface flows. The model is computationally cost‐effective, robust, reliable and easily implementable for practical design of filtration equipments, investigation of land use for water resource availability and assessment of the impacts of climatic variations on environmental catastrophes (i.e. coastal and urban floods). The model developed in this work results from the extension of a multi‐disciplinary project (AEROFIL) primarily sponsored by the European aerospace industries for development of a computer simulation package (Aircraft Cartridge Filter Analysis Modelling Program), which was successfully utilized and deployed for designing hydraulic dead‐end filters used in Airbus A380.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号