首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A numerical technique (FGVT) for solving the time-dependent incompressible Navier–Stokes equations in fluid flows with large density variations is presented for staggered grids. Mass conservation is based on a volume tracking method and incorporates a piecewise-linear interface reconstruction on a grid twice as fine as the velocity–pressure grid. It also uses a special flux-corrected transport algorithm for momentum advection, a multigrid algorithm for solving a pressure-correction equation and a surface tension algorithm that is robust and stable. In principle, the method conserves both mass and momentum exactly, and maintains extremely sharp fluid interfaces. Applications of the numerical method to prediction of two-dimensional bubble rise in an inclined channel and a bubble bursting through an interface are presented. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
导管周围内外流场的计算   总被引:2,自引:0,他引:2  
任安禄  赵峰  周连第 《力学学报》1994,26(6):641-648
提出了一个适合于水下兵器导管与壳体之间内外流场的计算方法。应用半交错网格,可方便地实施导管叶片面上和壳体上的物面边界条件,使得整个内外流场可以统一求解,基于连续性方程的提法,提出了一个类似于人工压缩性法的压力计算公式。用本方法计算了层流和湍流内外流问题,湍流计算采用κ-ε三两方程湍流模式,数值试验和结果比较表明本方法收敛性态良好,适用性强,结果置信度高。  相似文献   

3.
在以同位网格为基础的简单流场压力计算中,通常采用动量插值方法来平抑流场中的压力波动现象;但是对于建筑风场等复杂的钝体绕流问题,由该平抑方法得到的收敛风压场仍可能存在小幅波动。为彻底解决同位网格格式下的压力波动,除采用动量插值方法外,本文提出了在压力校正方程的界面流速中添加压力梯度差值项的方法。算例分析表明,该方法计算得到的建筑风压场完全避免了压力波动现象,风压解与试验结果吻合良好。  相似文献   

4.
A finite difference simulation method for a viscous flow around a circular cylinder sinusoidally oscillating at low Keulegan-Carpenter numbers is presented. Navier-Stokes equations in finite difference form are solved on a moving grid system, based on a time dependent coordinate transformation. Evolution with time of the flow structures induced by a circular cylinder performing sinusoidal oscillations in a fluid at rest, by means of stream lines, pressure contours and vortex shedding is studied in detail at Keulegan-Carpenter numbers, Kc = 9.4 and 14. The time dependent drag and lift are also explained.  相似文献   

5.
A study is made of the problem of the motion of an incompressible viscous fluid in the space between two coaxial disks rotating together with constant angular velocity under the assumption that the pressure changes in time in accordance with a harmonic law. The problem is solved using the equations of unsteady motion of an incompressible viscous fluid in a thin layer. It is shown that the velocity field in this case is a superposition on a steady field of damped oscillations with cyclic frequency equal to twice the angular velocity of the disks and forced oscillations with cyclic frequency equal to the cyclic frequency of the oscillations of the pressure field. It is shown that the amplitude of the forced oscillations of the velocity field depends strongly on the ratio of the cyclic frequency of the oscillations of the pressure field to the angular velocity of the disks. It is shown that there is a certain value of the ratio at which the amplitude of the forced oscillations has a maximal value (resonance). It is shown that even for very small amplitudes of the pressure oscillations the amplitude of the oscillations of the relative velocity at resonance may reach values comparable with the mean velocity of the main flow.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 166–169, January–February, 1984.  相似文献   

6.
A numerical scheme for the prediction of free surface flows is presented and investigated. The method is based on an adaptive grid Eulerian finite-volume method, where non-orthogonal boundary-fitted moving grids are employed to follow the free surface. The underlying flow solver consists in a pressure-correction scheme of SIMPLE type with multigrid acceleration, which is iteratively combined with the moving grid technique. Several numerical examples are considered to illustrate the capabilities of the approach.  相似文献   

7.
Summary The flow of an incompressible viscous fluid due to a periodic pressure gradient through the annular space between two porous concentric circular cylinders with uniform injection into the outer cylinder and uniform suction into the inner cylinder has been considered. The expressions for the pressure and velocity are found. In view of the presence of the Bessel function in the axial component of velocity, we have discussed the two special cases of very small and very large oscillations. An approximate expression for the temperature, including viscous dissipation, when the oscillations are small is also found.  相似文献   

8.
蒋锦良 《力学季刊》2006,27(1):90-95
本文提出一种计算三维定常流动的半人工瞬变法,本方法的特点是直接利用流体力学的原始基本方程组进行数值计算。运动方程中的一个分量方程被用于计算压力,另外两个分量方程被加入人工瞬变项而成为人工瞬变方程,这两个人工瞬变方程被用于计算速度的两个分量,第三个速度分量则通过连续性方程进行计算得到。根据半人工瞬变方程组的特点和流动区域的特性,本方法采用半交错不等距非正交曲线贴体混合网格系进行数值计算,并利用质点导数差分格式使计算更简便。本文以圆管中不可压缩流体对圆柱的三维定常绕流问题为算例,具体画出计算用的半交错不等距非正交曲线贴体混合网格系,介绍三维半人工瞬变法的计算方法和步骤,并通过数值计算得到了此算例的计算结果。  相似文献   

9.
2008年,本文作者和陶文铨等提出了一种用于速度和压力耦合求解的高效稳定压力修正全隐算法IDEAL,该算法通过在每个迭代层次上对压力方程进行两次内迭代计算,完全克服了SIMPLE算法的两个假设,充分满足了速度和压力之间的耦合,从而大大提高了计算的收敛性和健壮性.为了进一步实现IDEAL算法的推广应用,本文基于三维倾斜方腔顶盖驱动流动,研究了IDEAL算法在不同网格扭曲率下的求解特性.研究发现,在不同网格扭曲率下,IDEAL算法的健壮性和收敛性均优于SIMPLE算法,特别在高网格扭曲率情况下,IDEAL算法求解性能更加优于SIMPLE算法.在不同网格扭曲率下,IDEAL算法健壮性保持不变,几乎可以在任意速度亚松弛因子下获得收敛的解,同时IDEAL算法最短计算耗时较SIMPLE算法减少了56%~89%,验证了IDEAL算法的优越性.  相似文献   

10.
The discretization of the incompressible Navier-Stokes equation on boundary-fitted curvilinear grids is considered. The discretization is based on a staggered grid arrangement and the Navier-;Stokes equations in tensor formulation including Christoffel symbols. It is shown that discretization accuracy is much enhanced by choosing the velocity variables in a special way. The time-dependent equations are solved by a pressure-correction method in combination with a GMRES method. Special attention is paid to the discretization of several types of boundary conditions. It is shown that fairly non-smooth grids may be used using our approach.  相似文献   

11.
2008年,本文作者和陶文铨等提出了一种用于速度和压力耦合求解的高效稳定压力修正全隐算法IDEAL,该算法通过在每个迭代层次上对压力方程进行两次内迭代计算,完全克服了SIMPLE算法的两个假设,充分满足了速度和压力之间的耦合,从而大大提高了计算的收敛性和健壮性。为了进一步实现IDEAL算法的推广应用,本文基于三维倾斜方腔顶盖驱动流动,研究了IDEAL算法在不同网格扭曲率下的求解特性。研究发现,在不同网格扭曲率下,IDEAL算法的健壮性和收敛性均优于SIMPLE算法,特别在高网格扭曲率情况下,IDEAL算法求解性能更加优于SIMPLE算法。在不同网格扭曲率下,IDEAL算法健壮性保持不变,几乎可以在任意速度亚松弛因子下获得收敛的解,同时IDEAL算法最短计算耗时较SIMPLE算法减少了56%~89%,验证了IDEAL算法的优越性。  相似文献   

12.
剧变截面圆管内渗流的数值计算方法   总被引:1,自引:0,他引:1  
对于剧变截面圆管的渗流问题写出不可压缩渗流的基本方程组,对直接求解原始变量(速度和压力)的数值计算方法作出改进。先由非主流方向的运动方程计算压力,后由主流方向的运动方程计算主流方向的速度分量,再由连续性方程计算非主流方向的速度分量。这样可以避免在一般的求解原始变量方法中由连续性方程计算压力时出现的困难和麻烦。根据本方法和剧变截面圆管的特点,采用半交错不等距非正交贴体混合网格系。本文详细写出差分方程和迭代计算公式,对剧变截面圆管内的渗流算例进行数值计算。本方法的优点是简单和实用,在工程上具有较大的应用价值。  相似文献   

13.
A pulsating laminar flow of a viscous, incompressible liquid in a rectangular duct has been studied. The motion is induced under an imposed pulsating pressure difference. The problem is solved numerically. Different flow regimes are characterized by a non‐dimensional parameter based on the frequency (ω) of the imposed pressure gradient oscillations and the width of the duct (h). This, in fact, is the Reynolds number of the problem at hand. The induced velocity has a phase lag (shift) with respect to the imposed pressure oscillations, which varies from zero at very slow oscillations, to 90° at fast oscillations. The influence of the aspect ratio of the rectangular duct and the pulsating pressure gradient frequency on the phase lag, the amplitude of the induced oscillating velocity, and the wall shear were analyzed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
Smoothed Particle Hydrodynamics is implemented to study the motion of a thin rigid lamina undergoing large harmonic oscillations in a viscous fluid. Particularly, the flow physics in the proximity of the lamina is resolved and contours of non-dimensional velocity, vorticity and pressure are presented for selected oscillation regimes. The computation of the hydrodynamic load due to the fluid–structure interaction is carried out using Fourier decomposition to express the total fluid force in terms of a non-dimensional complex-valued hydrodynamic function, whose real and imaginary parts identify added mass and damping coefficients, respectively. For small oscillations, the hydrodynamic force reflects the harmonic nature of the displacement, whereas multiple harmonics are observed as both the amplitude and frequency of oscillation increase. We propose a novel formulation of hydrodynamic function that incorporates added mass and damping coefficients for a thin rigid lamina spanning large amplitudes in viscous fluids in a broad range of the oscillation frequencies. Results of the simulations are validated against numerical and experimental works available in the literature in addition to theoretical predictions for the limit case of zero-amplitude oscillations.  相似文献   

15.
In this paper, the Cartesian velocity components and the covariant velocity components are adopted respectively as the main variables in solving the momentum equations in the SIMPLE-like method to calculate a lid-driven cavity flow on non-orthogonal collocated grids. In total, more than 400 computer runs are carried out for a two-dimensional problem. The accuracy and convergence performance of using Cartesian and covariant velocity components are compared in detail. Comparisons show that both the Cartesian and covariant velocity methods have the same numerical accuracy. The convergence rate of the covariant velocity method can be faster than that of the Cartesian velocity method if the relaxation factor for pressure is small enough. However, the convergence range of the relaxation factor for pressure in the covariant velocity method is quite narrow. When the cross-derivatives in the pressure-correction equation are retained approximately, its convergence performance can be greatly improved. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
A solution methodology has been developed for incompressible flow in general curvilinear co‐ordinates. Two staggered grids are used to discretize the physical domain. The first grid is a MAC quadrilateral mesh with pressure arranged at the centre and the Cartesian velocity components located at the middle of the sides of the mesh. The second grid is so displaced that its corners correspond to the centre of the first grid. In the second grid the pressure is placed at the corner of the first grid. The discretized mass and momentum conservation equations are derived on a control volume. The two pressure grid functions are coupled explicitly through the boundary conditions and implicitly through the velocity of the field. The introduction of these two grid functions avoids an averaging of pressure and velocity components when calculating terms that are generated in general curvilinear co‐ordinates. The SIMPLE calculation procedure is extended to the present curvilinear co‐ordinates with double grids. Application of the methodology is illustrated by calculation of well‐known external and internal problems: viscous flow over a circular cylinder, with Reynolds numbers ranging from 10 to 40, and lid‐driven flow in a cavity with inclined walls are examined. The numerical results are in close agreement with experimental results and other numerical data. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
This work considers the internal flow of an incompressible viscous fluid contained in a rectangular duct subject to a rotation. A direct velocity–pressure algorithm in primitive variables with a Neumann condition for the pressure is employed. The spatial discretization is made with finite central differences on a staggered grid. The pressure and velocity fields are directly updated without any iteration. Numerical simulations with several Reynolds numbers and rotation rates were performed for ducts of aspect ratios 2:1 and 8:1. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
A pressure correction procedure for general unstructured meshes is presented. It is a cell-centred, collocated finite volume method and the pressure–velocity coupling is treated using SIMPLEC. The cells can have an arbitrary number of grid points (cell vertices). In the present study the number of faces on the cells varies between three and six. The discretized equations are solved using either a symmetric Gauss–Seidel solver or a conjugate gradient solver with a preconditioner. The method is applied to three two-dimensional test cases in which the flow is incompressible and laminar. The extension to three dimensions as well as to turbulent flow using transport models is straightforward. It can also be extended to handle compressible flow.  相似文献   

19.
A numerical method (pressure-correction method using a staggered grid) is coupled to a thermodynamic model for compressible liquid hydrazine. The method is applied to the venting of liquid hydrazine into space, during which the fluid undergoes a large pressure drop. Below the saturation pressure vaporisation occurs. This takes place near the outlet and induces variations of temperature, which may cause solidification and pipe clogging. In order to assess the risk of phase changes, numerical simulations of the venting line have been performed using a quasi one-dimensional approach. The numerical method can handle compressible flows of fluids with nonconvex equation of state at the low Mach numbers that occur during hydrazine venting. A numerical study of the liquid behaviour during strong depressurisation is performed. The method is validated using experimental data, and allows prediction of pressure evolution and vaporisation location along the pipe. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
A new numerical procedure for solving the two‐dimensional, steady, incompressible, viscous flow equations on a staggered Cartesian grid is presented in this paper. The proposed methodology is finite difference based, but essentially takes advantage of the best features of two well‐established numerical formulations, the finite difference and finite volume methods. Some weaknesses of the finite difference approach are removed by exploiting the strengths of the finite volume method. In particular, the issue of velocity–pressure coupling is dealt with in the proposed finite difference formulation by developing a pressure correction equation using the SIMPLE approach commonly used in finite volume formulations. However, since this is purely a finite difference formulation, numerical approximation of fluxes is not required. Results presented in this paper are based on first‐ and second‐order upwind schemes for the convective terms. This new formulation is validated against experimental and other numerical data for well‐known benchmark problems, namely developing laminar flow in a straight duct, flow over a backward‐facing step, and lid‐driven cavity flow. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号