首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By comparing the energy spectrum and total kinetic energy, the effects of numerical errors (which arise from aliasing and discretization errors), subgrid-scale (SGS) models, and their interactions on direct numerical simulation (DNS) and large eddy simulation (LES) are investigated. The decaying isotropic turbulence is chosen as the test case. To simulate complex geometries, both the spectral method and Pade compact difference schemes are studied. The truncated Navier-Stokes (TNS) equation model with Pade discrete filter is adopted as the SGS model. It is found that the discretization error plays a key role in DNS. Low order difference schemes may be unsuitable. However, for LES, it is found that the SGS model can represent the effect of small scales to large scales and dump the numerical errors. Therefore, reasonable results can also be obtained with a low order discretization scheme.  相似文献   

2.
The Lagrangian–Eulerian (LE) approach is used in many computational methods to simulate two-way coupled dispersed two-phase flows. These include averaged equation solvers, as well as direct numerical simulations (DNS) and large-eddy simulations (LES) that approximate the dispersed-phase particles (or droplets or bubbles) as point sources. Accurate calculation of the interphase momentum transfer term in LE simulations is crucial for predicting qualitatively correct physical behavior, as well as for quantitative comparison with experiments. Numerical error in the interphase momentum transfer calculation arises from both forward interpolation/approximation of fluid velocity at grid nodes to particle locations, and from backward estimation of the interphase momentum transfer term at particle locations to grid nodes. A novel test that admits an analytical form for the interphase momentum transfer term is devised to test the accuracy of the following numerical schemes: (1) fourth-order Lagrange Polynomial Interpolation (LPI-4), (3) Piecewise Cubic Approximation (PCA), (3) second-order Lagrange Polynomial Interpolation (LPI-2) which is basically linear interpolation, and (4) a Two-Stage Estimation algorithm (TSE). A number of tests are performed to systematically characterize the effects of varying the particle velocity variance, the distribution of particle positions, and fluid velocity field spectrum on estimation of the mean interphase momentum transfer term. Numerical error resulting from backward estimation is decomposed into statistical and deterministic (bias and discretization) components, and their convergence with number of particles and grid resolution is characterized. It is found that when the interphase momentum transfer is computed using values for these numerical parameters typically encountered in the literature, it can incur errors as high as 80% for the LPI-4 scheme, whereas TSE incurs a maximum error of 20%. The tests reveal that using multiple independent simulations and higher number of particles per cell are required for accurate estimation using current algorithms. The study motivates further testing of LE numerical methods, and the development of better algorithms for computing interphase transfer terms.  相似文献   

3.
《力学快报》2021,11(4):100248
We analyze the error of large-eddy simulation(LES) in wall pressure fluctuation of a turbulent channel flow. To separate different sources of the error, we conduct both direct numerical simulations(DNS)and LES, and apply an explicit filter on DNS data to obtain filtered DNS(FDNS) data. The error of LES is consequently decomposed into two parts: The first part is the error of FDNS with respect to DNS,which quantifies the influence of the filter operation. The second part is the difference between LES and FDNS induced by the error of LES in velocity field. By comparing the root-mean-square value and the wavenumber-frequency spectrum of the wall pressure fluctuation, it is found that the inaccuracy of the velocity fluctuations is the dominant source that induces the error of LES in the wall pressure fluctuation.The present study provides a basis on future LES studies of the wall pressure fluctuation.  相似文献   

4.
Explicitly filtered large-eddy simulations (LES), combining high-accuracy schemes with the use of a selective filtering without adding an explicit subgrid-scales (SGS) model, are carried out for the Taylor-Green-vortex and the supersonic-boundary-layer cases. First, the present approach is validated against direct numerical simulation (DNS) results. Subsequently, several SGS models are implemented in order to investigate if they can improve the initial filter-based methodology. It is shown that the most accurate results are obtained when the filtering is used alone as an implicit model, and for a minimal cost. Moreover, the tests for the Taylor-Green vortex indicate that the discretization error from the numerical methods, notably the dissipation error from the high-order filtering, can have a greater influence than the SGS models.  相似文献   

5.
吴磊  肖左利 《力学学报》2021,53(10):2667-2681
亚格子(SGS)应力建模在湍流大涡模拟(LES)中有着极为重要的作用. 传统亚格子应力模型存在相对误差较大、耗散过强等问题. 近年来, 计算机技术的发展使得人工神经网络(ANN)等机器学习方法逐渐成为亚格子应力建模型的新研究范式. 本文着重考虑滤波宽度及雷诺数影响, 在不可压缩槽道湍流中建立了亚格子应力的ANN模型. 该模型以滤波后的直接数值模拟(fDNS)流场物理量及滤波尺度为输入信息, 相应滤波尺度下的亚格子应力为输出量. 通过对不同滤波尺度及不同雷诺数数据的训练, ANN模型能够给出与直接数值模拟(DNS)高度吻合的亚格子应力. 此外, 模型在亚格子耗散等非ANN建模量上也有着优异的预测性能, 与基于DNS获得的对应物理量的相关系数大都在0.9以上, 较梯度模型及Smagorinsky模型有明显提升. 在后验测试中, ANN模型对流向平均速度剖面的预测同样优于梯度模型、Smagorinsky模型及隐式大涡模拟(ILES)等传统LES模型. 在脉动速度均方根预测方面, 除了某些法向位置外ANN模型的性能整体上相对其他3个模型有所提升. 然而, 随着网格尺度的增大ANN模型预测的结果与fDNS结果的偏差逐渐增大. 总之, ANN方法在发展高精度亚格子应力模型上具有很大的潜力.   相似文献   

6.
An implicit sub-grid scale model for large eddy simulation is presented by utilising the concept of a relaxation system for one dimensional Burgers' equation in a novel way. The Burgers' equation is solved for three different unsteady flow situations by varying the ratio of relaxation parameter (ε) to time step. The coarse mesh results obtained with a relaxation scheme are compared with the filtered DNS solution of the same problem on a fine mesh using a fourth-order CWENO discretisation in space and third-order TVD Runge-Kutta discretisation in time. The numerical solutions obtained through the relaxation system have the same order of accuracy in space and time and they closely match with the filtered DNS solutions.  相似文献   

7.
Large-eddy simulation (LES) has been extensively used as a tool to understand how various processes contribute to the dynamics of the stratocumulus layer. These studies are complicated by the fact that many processes are tied to the dynamics of the stably stratified interface that caps the stratocumulus layer, and which is inadequately resolved by LES. Recent direct numerical simulations (DNS) of isobaric mixing due to buoyancy reversal in a cloud-top mixing layer show that molecular effects are in some instances important in setting the cloud-top entrainment rate, which in turn influences the global development of the layer. This suggests that traditional LES are fundamentally incapable of representing cloud-top processes that depend on buoyancy reversal and that numerical artefacts can affect significantly the results. In this study, we investigate a central aspect of this issue by developing a test case that embodies important features of the buoyancy-reversing cloud-top layer. So doing facilitates a one-to-one comparison of the numerical algorithms typical of LES and DNS codes in a well-established case. We focus on the numerical effects only by switching off the subgrid-scale model in the LES code and using instead a molecular viscosity. We systematically refine the numerical grid and quantify numerical errors, validate convergence and assess computational efficiency of the low-order LES code compared to the high-order DNS. We show that the high-order scheme solves the cloud-top problem computationally more efficiently. On that basis, we suggest that the use of higher-order schemes might be more attractive than further increasing resolution to improve the representation of stratocumulus in LES.  相似文献   

8.
The direct numerical simulation (DNS) of the Taylor–Couette flow in the fully turbulent regime is described. The numerical method extends the work by Quadrio and Luchini [M. Quadrio, P. Luchini, Eur. J. Mech. B/Fluids 21 (2002) 413–427], and is based on a parallel computer code which uses mixed spatial discretization (spectral schemes in the homogeneous directions, and fourth-order, compact explicit finite-difference schemes in the radial direction). A DNS is carried out to simulate for the first time the turbulent Taylor–Couette flow in the turbulent regime. Statistical quantities are computed to complement the existing experimental information, with a view to compare it to planar, pressure-driven turbulent flow at the same value of the Reynolds number. The main source for differences in flow statistics between plane and curved-wall flows is attributed to the presence of large-scale rotating structures generated by curvature effects.  相似文献   

9.
The paper presents some results of application of a low-Re-number second-moment closure (SMC) to modelling the laminar-to-turbulent transition induced by a separation bubble. The same model, tested earlier in a number of low and high-Re-number flows, was found also to reproduce reasonably well several cases of bypass transition, as well as cyclic sequence of laminarization and turbulence revival in oscillating flows at transitional Re numbers, without any artificial transition triggering. The focus of the paper is on separation-induced transition in flow over a flat plate with a circular leading edge, and on a plane surface on which a laminar separation bubble was generated by imposed suction on the wall-opposite boundary. The results show acceptable agreement with available experimental data, large-eddy and direct numerical simulations (LES, DNS). The importance of applying higher-order discretization schemes for reproducing both the bubble and the transition is also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Two improved isogeometric quadratic elements and the central difference scheme are used to formulate the solution procedures of transient wave propagation problems. In the proposed procedures, the lumped matrices corresponding to the isogeometric elements are obtained. The stability conditions of the solution procedures are also acquired. The dispersion analysis is conducted to obtain the optimal Courant-Friedrichs-Lewy (CFL) number or time-step sizes corresponding to the spatial isogeometric elements. The dispersion analysis shows that the isogeometric quadratic element of the fourth-order dispersion error (called the isogeometric analysis (IGA)-f quadratic element) provides far more desirable numerical dissipation/dispersion than the element of the second-order dispersion error (called the IGA-s quadratic element) when appropriate time-step sizes are selected. The numerical simulations of one-dimensional (1D) transient wave propagation problems demonstrate the effectiveness of the proposed solution procedures.  相似文献   

11.
Gradient enhancement series are studied in the context of damage mechanics. Distinction is made between so-called explicit series and implicit series, both of which can be derived from a nonlocal damage model. The paper focuses on the difference between second-order and fourth-order truncations for either series. Dispersion analysis and numerical simulations are used to compare the various models. It is shown that for the explicit series the fourth-order term has a detrimental influence on the response, while for the implicit series the fourth-order term leads to a slightly closer approximation of the nonlocal model. The role of the critical wave length as it emerges from the dispersion analysis is shown to be decisive. When the critical wave length acts as an upper bound, a stable response is obtained and the critical wave length equals the width of the damaging zone. On the other hand, when the critical wave length acts as a lower bound, oscillations may appear of which the periodicity is set by this critical wave length.  相似文献   

12.
The near-wall regions of high Reynolds numbers turbulent flows must be modelled to treat many practical engineering and aeronautical applications. In this review we examine results from simulations of both attached and separated flows on coarse grids in which the near-wall regions are not resolved and are instead represented by approximate wall boundary conditions. The simulations use the dynamic Smagorinsky subgrid-scale model and a second-order finite-difference method. Typical results are found to be mixed, with acceptable results found in many cases in the core of the flow far from the walls, provided there is adequate numerical resolution, but with poorer results generally found near the wall. Deficiencies in this approach are caused in part by both inaccuracies in subgrid-scale modelling and numerical errors in the low-order finite-difference method on coarse near-wall grids, which should be taken into account when constructing models and performing large-eddy simulation on coarse grids. A promising new method for developing wall models from optimal control theory is also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Large-eddy simulation (LES) of turbulent combustion with premixed flamelets is investigated in this paper. The approach solves the filtered Navier–Stokes equations supplemented with two transport equations, one for the mixture fraction and another for a progress variable. The LES premixed flamelet approach is tested for two flows: a premixed preheated Bunsen flame and a partially premixed diffusion flame (Sandia Flame D). In the first case, we compare the LES with a direct numerical simulation (DNS). Four non-trivial models for the chemical source term are considered for the Bunsen flame: the standard presumed beta-pdf model, and three new propositions (simpler than the beta-pdf model): the filtered flamelet model, the shift-filter model and the shift-inversion model. A priori and a posteriori tests are performed for these subgrid reaction models. In the present preheated Bunsen flame, the filtered flamelet model gives the best results in a priori tests. The LES tests for the Bunsen flame are limited to a case in which the filter width is only slightly larger than the flame thickness. According to the a posteriori tests the three models (beta-pdf, filtered flamelet and shift-inversion) show more or less the same results as the trivial model, in which subgrid reaction effects are ignored, while the shift-filter model leads to worse results. Since LES needs to resolve the large turbulent eddies, the LES filter width is bounded by a maximum. For the present Bunsen flame this means that the filter width should be of the order of the flame thickness or smaller. In this regime, the effects of subgrid reaction and subgrid flame wrinkling turn out to be quite modest. The LES-results of the second case (Sandia Flame D) are compared to experimental data. Satisfactory agreement is obtained for the main species. Comparison is made between different eddy-viscosity models for the subgrid turbulence, and the Smagorinsky eddy-viscosity is found to give worse results than eddy-viscosities that are not dominated by the mean shear. Paper presented on the Eccomas Thematic Conference Computational Combustion 2007, submitted for a special issue of Flow, Turbulence and Combustion.  相似文献   

14.
Well-resolved two-dimensional numerical simulations of the unsteady separated flow past a normal flat plate at low Reynolds numbers have been performed using a fractional step procedure with high-order spatial discretization. A fifth-order upwind-biased scheme is used for the convective terms and the diffusive terms are represented by a fourth-order central difference scheme. The pressure Poisson equation is solved using a direct method based on eigenvalue decomposition of the coefficient matrix. A systematic study of the flow has been conducted with high temporal and spatial resolutions for a series of Reynolds numbers. The interactions of the vortices shed form the shear layers in the near-and far-wake regions are studied. For Reynolds numbers less than 250 the vortices are observed to convect parallel to the freestream. However, at higher Reynolds numbers (500 and 1000), complex interactions including vortex pairing, tearing and deformations are seen to occur in the far-wake region. Values of the drag coefficient and the wake closure length are presented and compared with previous experimental and numerical studies.  相似文献   

15.
Conditional Moment Closure for Large Eddy Simulations   总被引:1,自引:0,他引:1  
A conditional moment closure (CMC) based combustion model for large-eddy simulations (LES) of turbulent reacting flow is proposed and evaluated. Transport equations for the conditionally filtered species are derived that are consistent with the LES formulation and closures are suggested for the modelling of the conditional velocity, conditional scalar dissipation and the fluctuations around the conditional mean. A conventional β-probability density distribution of the scalar is used together with dynamic modelling for the sub-grid fluxes. The model is validated by comparison of simulations with measurements of a piloted, turbulent methane-air jet diffusion flame.  相似文献   

16.
Based on a priori tests, in large eddy simulation (LES) of turbulent fluid flow, the numerical error related to low‐order finite‐difference‐type methods can be large in comparison with the effect of subgrid‐scale (SGS) model. Explicit filtering has been suggested to reduce the error, and it has shown promising results in a priori studies and in some simulations with fourth‐order method. In this paper, the effect of explicit filtering on the total simulation error is studied together with a second‐order scheme, where the numerical error should be even larger. The fully developed turbulent channel flow between two parallel walls is used as a test case. Rather simple SGS models are applied, because these models are most likely used in practical applications of LES. Explicit filtering is here applied to the non‐linear convection term of the Navier–Stokes equations, four three‐dimensional filter functions are applied, and the effect of filtering is separated from the effect of SGS modelling. It is shown that the effect of filtering is rather large and smooth filters introduce an additional error component that increases the total simulation error. Finally, filtering via subfilter‐scale modelling is applied, and it is shown that this approach performs better. However, the large‐frequency components of the resolved flow field are not as effectively damped as when the non‐linear convection term is filtered. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
对流扩散方程的摄动有限体积(PFV)方法及讨论   总被引:8,自引:2,他引:8  
高智  柏威 《力学学报》2004,36(1):88-93
在有限体积(FV)方法的重构近似中,引入数值摄动处理,即把界面数值通量摄动展开成网格间距的幂级数,并利用积分方程自身的性质求出幂级数的系数,同时获得高精度迎风和中心型摄动有限体积(PFV)格式.对标量输运方程给出积分近似为二阶、重构近似为二、三和四阶迎风和中心型PFV格式,这些PFV格式的结构形式及使用基点数与一阶迎风格式完全一致,迎风PFV格式满足对流有界准则;二阶和四阶中心PFV格式对网格Peclet数的任意值均为正型格式,比常用的二阶中心格式优越.用一维标量输运和方腔流动算例说明PFV格式的优良性能,并把PFV方法与性质相近的摄动有限差分(PFD)方法及相关的高精度方法作了对比分析.  相似文献   

18.
The accuracy of large-eddy simulation (LES) of a turbulent premixed Bunsen flame is investigated in this paper. To distinguish between discretization and modeling errors, multiple LES, using different grid sizes h but the same filterwidth Δ, are compared with the direct numerical simulation (DNS). In addition, LES using various values of Δ but the same ratio Δ/h are compared. The chemistry in the LES and DNS is parametrized with the standard steady premixed flamelet for stochiometric methane-air combustion. The subgrid terms are closed with an eddy-viscosity or eddy-diffusivity approach, with an exception of the dominant subgrid term, which is the subgrid part of the chemical source term. The latter subgrid contribution is modeled by a similarity model based upon 2Δ, which is found to be superior to such a model based upon Δ. Using the 2Δ similarity model for the subgrid chemistry the LES produces good results, certainly in view of the fact that the LES is completely wrong if the subgrid chemistry model is omitted. The grid refinements of the LES show that the results for Δ = h do depend on the numerical scheme, much more than for h = Δ/2 and h = Δ/4. Nevertheless, modeling errors and discretization error may partially cancel each other; occasionally the Δ = h results were more accurate than the h ≤ Δ results. Finally, for this flame LES results obtained with the present similarity model are shown to be slightly better than those obtained with standard β-pdf closure for the subgrid chemistry.  相似文献   

19.
Incompressible flow separating from the upper surface of an airfoil at an 18° angle of attack and a Reynolds number of Re = 105, based on the freestream velocity and chord length c, is studied by the means of large-eddy simulation (LES). The numerical method is based on second-order central spatial discretization on a Cartesian grid using an immersed boundary technique. The results are compared with an LES using body-fitted nonorthogonal grids and with experimental data.  相似文献   

20.
When low‐order finite‐difference methods are applied in large eddy simulation (LES), the magnitude of the numerical error may be larger than that of the subgrid‐scale (SGS) term. In this paper, the effect of explicit filtering on the numerical error related to the spatial discretization of the convection term and the exact SGS term is studied a priori in the turbulent fully developed channel flow. As the filter width is increased the grid resolution is kept constant. Also filtering in the inhomogeneous wall‐normal direction is discussed. The main conclusions are related to two approaches to explicit filtering. In the traditional approach, the whole velocity field is filtered explicitly while in the alternative approach, only the non‐linear convection term of the Navier–Stokes equations is filtered explicitly. Based on the results presented in the paper it seems that the first approach leads to an unphysical situation. However, the later approach works in the desired way, and the numerical error becomes clearly smaller than the SGS term. The main difference between the two approaches seems to be the interpretation of the resolved non‐linear term in the filtered Navier–Stokes equations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号