首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present paper makes use of a wave equation formulation of the primitive shallow water equations to simulate one-dimensional free surface flow. A numerical formulation of the boundary element method is then developed to solve the wave continuity equation using a time-dependent fundamental solution, while an explicit finite difference scheme is used to derive velocities from the primitive momentum equation. One-dimensional free surface flows in open channels are treated and the results compared with analytical and numerical solutions. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
A p-type finite element scheme is introduced for the three-dimensional shallow water equations with a harmonic expansion in time. The wave continuity equation formulation is used which decouples the problem into a Helmholtz equation for surface elevation and a momentum equation for horizontal velocity. An exploration of the applicability of p methods to this form of the shallow water problem is presented, with a consideration of the problem of continuity errors. The convergence rates and relative computational efficiency between h- and p- type methods are compared with the use of three test cases representing various degrees of difficulty. A channel test case establishes convergence rates, a continental shelf test case examines a problem with accuracy difficulties at the shelf break, and a field-scale test case examines problems with highly irregular grids. For the irregular grids, adaptive h combined with uniform p refinement was necessary to retain high convergence rates. © 1997 John Wiley & Sons, Ltd.  相似文献   

3.
A new symmetric formulation of the two-dimensional shallow water equations and a streamline upwind Petrov–Galerkin (SUPG) scheme are developed and tested. The symmetric formulation is constructed by means of a transformation of dependent variables derived from the relation for the total energy of the water column. This symmetric form is well suited to the SUPG approach as seen in analogous treatments of gas dynamics problems based on entropy variables. Particulars related to the construction of the upwind test functions and an appropriate discontinuity-capturing operator are included. A formal extension to the viscous, dissipative problem and a stability analysis are also presented. Numerical results for shallow water flow in a channel with (a) a step transition, (b) a curved wall transition and (c) a straight wall transition are compared with experimental and other computational results from the literature.  相似文献   

4.
The appearance of spurious pressure modes in early shallow‐water (SW) models has resulted in two common strategies in the finite element (FE) community: using mixed primitive variable and generalized wave continuity equation (GWCE) formulations of the SW equations. One FE scheme in particular, the P ? P1 pair, combined with the primitive equations may be advantageously compared with the wave equation formulations and both schemes have similar data structures. Our focus here is on comparing these two approaches for a number of measures including stability, accuracy, efficiency, conservation properties, and consistency. The main part of the analysis centres on stability and accuracy results via Fourier‐based dispersion analyses in the context of the linear SW equations. The numerical solutions of test problems are found to be in good agreement with the analytical results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
An initial-boundary value problem for shallow equation system consisting of water dynamics equations, silt transport equation, the equation of bottom topography change, and of some boundary and initial conditions is studied, the existence of its generalized solution and semidiscrete mixed finite element (MFE) solution was discussed, and the error estimates of the semidiscrete MFE solution was derived. The error estimates are optimal.  相似文献   

6.
变深度浅水域中非定常船波   总被引:1,自引:0,他引:1  
陈波  吴建康 《力学学报》2003,35(1):64-68
以Green—Naghdi(G—N)方程为基础,采用波动方程/有限元法计算船舶经过变深度浅水域时非定常波浪特性.把运动船舶对水面的扰动作为移动压强直接加在Green-Naghdi方程里,以描述运动船体和水面的相互作用.以Series60 CB=0.6船为算例,给出自由面坡高,波浪阻力在船舶经过一个水下凸包时变化规律,并与浅水方程的结果进行了比较.计算结果表明,当船舶经过凸包时,波浪阻力先增加,后减少,并逐渐趋于正常.同时发现,当船速小于临界速度时(Fr=√gh<1.0),G—N方程给出的船后尾波比浅水方程的结果明显,波浪阻力也比浅水方程的结果有所提高,频率散射必须考虑.当船速大于临界速度时(Fr=√gh>1.0),G—N方程的计算结果与浅水方程差别不大,频率散射的影响可以忽略.  相似文献   

7.
用格子Boltzmann方程模拟浅水波问题   总被引:5,自引:0,他引:5  
提出了用格子Boltzmann方程(LBE)模拟浅水波问题的方法.通过无粘气体运动方程与浅水波方程的比较,确定了LBE方法中平衡态的形式,使宏观方程与浅水波方程一致.计算了二维浅水波的一个问题,数值结果与精确解做了比较.  相似文献   

8.
Two common strategies for solving the shallow water equations in the finite element community are the generalized wave continuity equation (GWCE) reformulation and the quasi‐bubble velocity approximation. The GWCE approach has been widely analysed in the literature. In this work, the quasi‐bubble equations are analysed and comparisons are made between the quasi‐bubble approximation of the primitive form of the shallow water equations and a linear finite element approximation of the GWCE reformulation of the shallow water equations. The discrete condensed quasi‐bubble continuity equation is shown to be identical to a discrete wave equation for a specific GWCE weighting parameter value. The discrete momentum equations are slightly different due to the bubble function. In addition, the dispersion relationships are shown to be almost identical and numerical experiments confirm that the two schemes compute almost identical results. Analysis of the quasi‐bubble formulation suggests a relationship that may guide selection of the optimal GWCE weighting parameter. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
各向异性体内含任意孔洞对反平面波散射的边界元方法   总被引:3,自引:0,他引:3  
本文借助于广义格林公式导出了用位移表示的各向异性介质中SH波入射时的边界积分方程.根据本文作者在文献[8]给出的基本解,求解了各向异性介质中孔洞对SH波的散射问题.边界积分方程的离散基于常数元模式.文中给出了一个圆柱、一个椭圆柱和两个椭圆柱形式的孔洞周围的位移场和应力场的数值结果.最后,对入射波频率较高时的情形作了说明.  相似文献   

10.
Wave equation models currently discretize the generalized wave continuity equation with a three‐time‐level scheme centered at k and the momentum equation with a two‐time‐level scheme centered at k+1/2; non‐linear terms are evaluated explicitly. However in highly non‐linear applications, the algorithm becomes unstable at even moderate Courant numbers. This paper examines an implicit treatment of the non‐linear terms using an iterative time‐marching algorithm. Depending on the domain, results from one‐dimensional experiments show up to a tenfold increase in stability and temporal accuracy. The sensitivity of stability to variations in the G‐parameter (a numerical weighting parameter in the generalized wave continuity equation) was examined; results show that the greatest increase in stability occurs with G/τ=2–50. In the one‐dimensional experiments, three different types of node spacing techniques—constant, variable, and LTEA (Localized Truncation Error Analysis)—were examined; stability is positively correlated to the uniformity of the node spacing. Lastly, a scaling analysis demonstrates that the magnitudes of the non‐linear terms are positively correlated to those that most influence stability, particularly the term containing the G‐parameter. It is evident that the new algorithm improves stability and temporal accuracy in a cost‐effective manner. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
In order to simulate flows in the shallow water limit, the full incompressible Navier–Stokes equations with free boundaries are solved using a single layer of finite elements. This implies a polynomial approximation of the velocity profile in the vertical direction, which in turn distorts the wave speed. This fact is verified by numerical results: the wave speed depends on the vertical discretization. When at least two layers of finite elements are used, the boundary layer at the bottom can be simulated and the correct solution for the shallow water limit is recovered. Then this algorithm is applied to the prediction of Tsunami event.  相似文献   

12.
This paper builds upon earlier work that developed and evaluated a 1D predictor–corrector time‐marching algorithm for wave equation models and extends it to 2D. Typically, the generalized wave continuity equation (GWCE) utilizes a three time‐level semi‐implicit scheme centred at k, and the momentum equation uses a two time‐level scheme centred at k+12. It has been shown that in highly non‐linear applications, the algorithm becomes unstable at even moderate Courant numbers. This work implements and analyses an implicit treatment of the non‐linear terms through the use of an iterative time‐marching algorithm in the two‐dimensional framework. Stability results show at least an eight‐fold increase in the maximum time step, depending on the domain. Studies also examined the sensitivity of the G parameter (a numerical weighting parameter in the GWCE) with results showing the greatest increase in stability occurs when 1?G/τmax?10, a range that coincides with the recommended range to minimize errors. Convergence studies indicate an increase in temporal accuracy from first order to second order, while overall error is less than the original algorithm, even at higher time steps. Finally, a parallel implementation of the new algorithm shows that it scales well. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
A new code for simulating convection in a horizontal layer of fluid is described. The code can be used to study the usual Rayleigh –Bénard convection problem but can also incorporate internal heating, rotation and the vortex force responsible for Langmuir circulation. Boundary conditions in the horizontal directions are periodic, but a wide range of conditions may be imposed on the upper and lower boundaries. A novel feature of the method is the way in which these boundary conditions are implemented through the following analytical/numerical technique. The governing partial differential equations are reduced to a number of inhomogeneous second-order ODEs for the horizontal Fourier modes. The solutions to these are then written as the sum of a particular integral and a complementary function. The former is easily computed (numerically) without regard to the boundary conditions and the latter is then selected (analytically/numerically) to ensure that the boundary conditions are met. We apply our code to the problem of highly supercritical thermal convection in a shear flow. We compare our results with simulations in the literature and, by integrating over a longer time interval, find flow features not observed in the previous simulations, including stable time-dependent states, multiple stable equilibria and chaos. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents the results of some studies on the development and application of a finite element method (FEM) with a closed-form solution technique for time discretization. The closed-form solution is based on the eigenvalues/vectors of a coefficient matrix. The method is first applied to the one-dimensional linearized shallow water equations and then extended to the two-dimensional shallow water equations. An attempt is made to improve its efficiency by incorporating time splitting and using the closed-form solution technique only for linear terms. Some case studies of a rectangular channel and harbour are presented to illustrate the satisfactory working of the method. © 1997 by John Wiley & Sons, Ltd. Int. j. numer. methods fluids 24: 953–963, 1997.  相似文献   

15.
A finite difference method for the Navier–Stokes equations in vorticity –streamfunction formulation is proposed to resolve the difficulty of the lack of a vorticity boundary condition at a no-slip boundary. It is particularly suitable for flows in regions with complicated geometries. Convergence with second-order accuracy in vorticity and velocity is established. In numerical experiments the convergence rates agree with theoretical predictions. Test results for the two-dimensional driven cavity problem and for the flow in expansion and contraction channels are given.  相似文献   

16.
Abstract

A numerical scheme for solving the shallow-water equations is presented. An analogy is made between flows governed by shallow-water equations and the Euler system of equations used in gas dynamics. An emphasis is placed on the difference presented by the bathymetry in hydraulic systems. The discretization of the governing equations is based on Roe's flux difference-splitting solver, initially developed for solving inviscid compressible flows. The spatial discretization is handled within a finite-volume context by using triangles or quadrilaterals as the basic control-volume cells. This approach enables an easy and flexible treatment of general geometries. A development of the boundary conditions tailored for the current scheme is given. Fundamental validation tests are presented.  相似文献   

17.
A two-dimensional (horizontal plane) coastal and estuarine region model, capable of predicting the combined effects of gravity surface shallow- water waves (shoaling, refraction, diffraction, reflection and breaking), and steady currents, is described and numerical results are compared with those obtained experimentally. Two series of observations within a wave flume and a combined wave-current facility were developed. In the first case, the wave was generated via a hinged paddle located within a deepened section at one end of the channel, as, in the second case, the wave propagating with or against the current was generated by a plunger-type wavemaker; the re-circulating current was introduced via one passing tank connected to a centrifugal pump. Several comparisons for a number of 1D situations and one 2D horizontal plane case are presented.  相似文献   

18.
The purpose of this paper is to present a new algorithm for the resolution of both interior and boundary layers present in the convection–diffusion equation in laminar regimes, based on the formulation of a family of polynomial– exponential elements. We have carried out an adaptation of the standard variational methods (finite element method and spectral element method), obtaining an algorithm which supplies non-oscillatory and accurate solutions. The algorithm consists of generating a coupled grid of polynomial standard elements and polynomial–exponential elements. The latter are able to represent the high gradients of the solution, while the standard elements represent the solution in the areas of smooth variation.  相似文献   

19.
A new computational method is developed for numerical solution of the Richards equation for flow in variably saturated porous media. The new method, referred to as the mixed transform finite element method, employs the mixed formulation of the Richards equation but expressed in terms of a partitioned transform. An iterative finite element algorithm is derived using a Newton–Galerkin weak statement. Specific advantages of the new method are demonstrated with applications to a set of one— dimensional test problems. Comparisons with the modified Picard method show that the new method produces more robust solutions for a broad range of soil– moisture regimes, including flow in desiccated soils, in heterogeneous media and in layered soils with formation of perched water zones. In addition, the mixed transform finite element method is shown to converge faster than the modified Picard method in a number of cases and to accurately represent pressure head and moisture content profiles with very steep fronts. © 1997 by John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号