首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three-dimensional fully developed turbulent fluid flow and heat transfer in a square duct are numerically investigated with the author's anisotropic low-Reynolds-number k-ε turbulence model. Special attenton has been given to the regions close to the wall and the corner, which are known to influence the characteristics of secondary flow a great deal. Hence, instead of the common wall function approach, the no-slip boundary condition at the wall is directly used. Velocity and temperature profiles are predicted for fully developed turbulent flows with constant wall temperature. The predicted variations of both local wall shear stress and local wall heat flux are shown to be in close agreement with available experimental data. The present paper also presents the budget of turbulent kinetic energy equation and the systematic evaluation for existing wall function forms. The commonly adopted wall function forms that are valid for two-dimensional flows are found to be inadequate for three-dimensional turbulent flows in a square duct.  相似文献   

2.
A three-parameter model of turbulence applicable to free boundary layers has been developed and applied for the prediction of axisymmetric turbulent swirling flows in uniform and stagnant surroundings under the action of buoyancy forces. The turbulent momentum and heat fluxes appearing in the time-averaged equations for the mean motion have been determined from algebraic expressions, derived by neglecting the convection and diffusion terms in the differential transport equations for these quantities, which relate the turbulent fluxes to the kinetic energy of turbulence, k, the dissipation length scale of turbulence, L, and the temperature covariance, T2. Differential transport equations have been used to determine these latter quantities. The governing equations have been solved using fully implicit finite difference schemes. The turbulence model is capable of reproducing the gross features of pure jet flows, buoyant flows and swirling flows for weak and moderate swirl. The behaviour of a turbulent buoyant swirling jet has been found to depend solely on exit swirl and Froude numbers. The predicted results indicate that the incorporation of buoyancy can cause significant changes in the behaviour of a swirling jet, particularly when the buoyancy strength is high. The jet exhibits similarity behaviour in the initial region for weak swirl and weak buoyancy strengths only, and the asymptotic case of a swirling jet under the action of buoyancy forces is a pure plume in the far field. The predicted results have been found to be in satisfactory agreement with the available experimental data and in good qualitative agreement with other predicted results.  相似文献   

3.
In the present case, the conjugate heat transfer involving a turbulent plane offset jet is considered. The bottom wall of the solid block is maintained at an isothermal temperature higher than the jet inlet temperature. The parameters considered are the offset ratio (OR), the conductivity ratio (K), the solid slab thickness (S) and the Prandtl number (Pr). The Reynolds number considered is 15,000 because the flow becomes fully turbulent and then it becomes independent of the Reynolds number. The ranges of parameters considered are: OR = 3, 7 and 11, K = 1–1,000, S = 1–10 and Pr = 0.01–100. High Reynolds number two-equation model (k–ε) has been used for turbulence modeling. Results for the solid–fluid interface temperature, local Nusselt number, local heat flux, average Nusselt number and average heat transfer have been presented and discussed.  相似文献   

4.
The flow and temperature fields of a turbulent impinging jet are rather complex. In order to accurately describe the flow and heat-transfer process, two important factors that must be taken into account are the turbulence model and the wall function. Several turbulence models, including κ–? turbulence models, κ–ω turbulence models, low-Re turbulence models, the κ–κl–ω turbulence model, the Transition SST turbulence model, the V2F turbulence model and the RSM turbulence model, are examined and compared to experimental data. Furthermore, for the near wall region, various wall functions are presented for comparison and they include the standard wall function, the scale wall function, the non-equilibrium wall function and the enhanced wall function. The distribution features of velocity, turbulent kinetic energy and Nusselt number are determined in order to provide a reliable reference for the multiphase impinging jet in the future.  相似文献   

5.
A computational model has been developed to predict heat and mass transfer and hydrodynamic characteristics of a turbulent gas–vapor–droplet flow. Turbulent characteristics of the gas phase are computed using the k– model of turbulence. It is shown that, with increasing inlet droplet diameter, the rate of heat transfer between the duct surface and the vapor–gas mixture decreases appreciably, whereas the wall friction increases only insignificantly. The predicted values agree fairly well with available experimental and numerical data  相似文献   

6.
Numerical simulations have been undertaken for the benchmark problem of natural convection flow in a square cavity. The control volume method is used to solve the conservation equations for laminar and turbulent flows for a series of Rayleigh numbers (Ra) reaching values up to 1010. The k-? model has been used for turbulence modelling with and without logarithmic wall functions. Uniform and non-uniform (stretched) grids have been employed with increasing density to guarantee accurate solutions, especially near the walls for high Ra-values. ADI and SIP solvers are implemented to accelerate convergence. Excellent agreement is obtained with previous numerical solutions, while some discrepancies with others for high Ra-values may be due to a possibly different implementation of the wall functions. Comparisons with experimental data for heat transfer (Nusselt number) clearly demonstrates the limitations of the standard k-? model with logarithmic wall functions, which gives significant overpredictions.  相似文献   

7.
A mixedness-reactedness flamelet combustion model coupled with a comprehensive radiation heat transfer model based on the discrete transfer method of solution of the radiative transport equation is applied for the simulation of a 3 MW non-swirling turbulent non-premixed natural gas flame in the experimental furnace at the International Flame Research Foundation. In the calculation, turbulence is represented by the standard k − ε and a differential Reynolds-stress model. Predictions are compared with measurements of mean gas velocity, temperature, major species concentrations and incident radiation wall flux. The radiative mixedness-reactedness flamelet combustion model, irrespective of the model for turbulence, is able to reproduce the basic structure of the experimental flame, which is stabilised downstream of the burner nozzle. In the near burner region, encompassing the non-reacting lift-off zone, good quality predictions are obtained using both the turbulence models, whereas further downstream, within the combusting zone of the jet, the Reynolds-stress turbulence model generates better predictions at and about the furnace axis. The nitric oxide (NO) formation via the thermal- and prompt-NO routes was also calculated and compared with in-flame and flue-gas NO data. The measured NO level at the furnace exit is well reproduced in the calculation, however discrepancies exist near the burner where NO concentrations around the furnace axis are overpredicted.  相似文献   

8.
A numerical study of fluid flow and heat transfer in a two-dimensional channel under fully developed turbulent conditions is reported. A computer program which is capable of treating both forced and natural convection problems under turbulent conditions has been developed. The code uses the high-Reynolds-number form of the two equation turbulent model(k-?) in which a turbulent kinetic energy near-wall model is incorporated in order to accurately represent the behavior of the flow near the wall, particularly in the viscous sublayer where the turbulent Reynolds number is small. A near-wall temperature model has been developed and incorporated into the energy equation to allow accurate prediction of the temperature distribution near the wall and, therefore, accurate calculation of heat transfer coefficients. The sensitivity of the prediction of flow and heat transfer to variations in the coefficients used in the turbulence model is investigated. The predictions of the model are compared to available experimental and theoretical results; good agreement is obtained. The inclusion of the near-wall temperature model has further improved the predictions of the temperature profile and heat transfer coefficient. The results indicate that the turbulent kinetic energy Prandtl number should be a function of Reynolds number.  相似文献   

9.
 Impinging jet combusting flows on granite plates are studied. A mathematical model for calculating heat release in turbulent impinging premixed flames is developed. The combustion including radiative heat transfer and local extinction effects, and flow characteristics are modeled using a finite volume computational approach. Two different eddy viscosity turbulence models, namely the standard k–ɛ and the RNG k–ɛ model with and without radiation (discrete transfer model) are assessed. The heat released predictions are compared with experimental data and the agreement is satisfactory only when both radiative heat transfer and local extinction modeling are taken into account. The results indicate that the main effect of radiation is the decrease of temperature values near the jet stagnation point and along the plate surface. Radiation increases temperature gradients and affects predicted turbulence levels independently of the closure model used. Also, the RNG k–ɛ predicts higher temperatures close the solid plate, with and without radiative heat transfer. Received on 13 November 2000 / Published online: 29 November 2001  相似文献   

10.
The initial stage of the development of a wall jet under the influence of strong external turbulence has been studied in a novel shear-flow mixing-box experiment. A fully developed channel flow of depth h (40 mm) enters along the top wall of a cuboidal box of height 11 h in which a combination of oscillatory and turbulent velocity fluctuations are generated by a vertical oscillating grid at the midplane 5 h below the wall. When the ratio of the rms grid-generated velocity fluctuations, , to the local mean velocity inside the wall jet layer, u, is greater than about 0.1, significant changes are observed in the mean shear profile and in the eddy structure of the wall jet. The wall jet thickness increases by approximately 25% but the maximum velocity decreases by less than 10% compared to the case without the external turbulence. Fluctuations of the streamwise velocity component increase as expected in the outer part of the wall jet, but the most significant result is the increase by 70% of the fluctuations in the boundary layer close to the wall. CFD simulations using the k-ɛ RNG of the FLUENT CFD Code do not properly model the effect of the large scale external turbulence in this experiment. However, an artificial method, which introduces a series of small inlet/outlet jets to represent external turbulence, approximately simulates the overall effects of the oscillating grid on the wall jet, but does not simulate the amplification of the near wall turbulence. F. T. M. Nieuwstadt: Rest in peace (1946–2005).  相似文献   

11.
One of the most important challenges in mathematical modeling of convective heat transfer to the turbulent flow of a supercritical fluid is the turbulence modeling. The turbulence modeling, like other aspects of the supercritical fluid flows, seems to be high affected by the large variations of the fluid properties which needs to be further investigated. A two dimensional CFD code has been developed and used in this study to examine a number of the low Reynolds number k-e turbulence models. Both flow conditions corresponding to the heat transfer enhancement and deterioration have been studied. The results appear to be quite sensitive to the choice of the turbulence model, especially in the deteriorated regime of heat transfer. The turbulence model assisting the two-dimensional numerical model of the present study to best fit the experiments has been determined for both cases of the enhanced and deteriorated heat transfer. That is while the jump in the wall temperature occurring in the deteriorated regime of heat transfer is over- predicted by the present numerical code regardless of the turbulence model used.  相似文献   

12.
The use of finite element methods for turbulent boundary-layer flow is relatively recent and of limited extent.1 In the present study, we extend the group variable approach of Fletcher and Fleer2,3 to treat turbulent boundary layer flows with heat transfer using a two-equation turbulence model. The main concepts in the formulations include a Dorodnitsyn-type transformation which uses a velocity component as the transverse variable, a ‘variational’ formulation for the transformed equations using special test functions and development of a two-equation turbulence model in terms of the turbulent kinetic energy and turbulence dissipation rate as additional field variables. Several numerical test cases have been examined comparing the results with finite difference calculations and comparing the two-equation turbulence model with an algebraic turbulence model.  相似文献   

13.
14.
A computational study has been carried out to analyse complex interaction of radiation with turbulent natural convective flow of dry and humid air in open-ended channels. Transient flow simulations are undertaken in the channel with one uniformly heated wall and adiabatic side walls for different values of emissivity of active walls with and without participating medium. To adequately present turbulence and radiation, a computational model included large eddy simulations for the turbulent flow coupled with discrete ordinates method for radiation transfer. Spectral line-based weighted-sum-of-grey-gases for the absorption properties of water vapour has been adopted. Complex three-dimensional vortical structures are identified which directly affect the temperature distribution on the heated wall. Including wall to wall radiation resulted in significant changes in the heat transfer, reaching 14 °C temperature drop at the hot wall with wall emissivity of 0.9. Mixing and cooling rates in this case were increased by up to 25%. Including gas radiation for the humid air with the water vapour molar fraction of 0.02 corresponding to saturated conditions at inlet temperature of 25 °C did not have a significant effect on the mean flow and temperature values comparing with wall to wall radiation. However, turbulent statistics have changed significantly resulting in a delayed transition to turbulence near the active wall of the channel and increased turbulent activity near the cold wall. The model developed in the present study is also applicable in fire management, where the aim is to reduce the damage that occurs when a PV module is exposed to high temperatures.  相似文献   

15.
A thermo-mechanical turbulence model is developed and used for predicting heat transfer in a gas–solid flow through a vertical pipe with constant wall heat flux. The new four-way interaction model makes use of the thermal kθ–τθ equations, in addition to the hydrodynamic k–τ transport, and accounts for the particle–particle and particle–wall collisions through a Eulerian/Lagrangian formulation. The simulation results indicate that the level of thermal turbulence intensity and the heat transfer are strongly affected by the particle collisions. Inter-particle collisions attenuate the thermal turbulence intensity near the wall but somewhat amplify the temperature fluctuations in the pipe core region. The hydrodynamic-to-thermal times-scale ratio and the turbulent Prandtl number in the region near the wall increase due to the inter-particle collisions. The results also show that the use of a constant or the single-phase gas turbulent Prandtl number produces error in the thermal eddy diffusivity and thermal turbulent intensity fields. Simulation results also indicate that the inter-particle contact heat conduction during collision has no significant effect in the range of Reynolds number and particle diameter studied.  相似文献   

16.
In this study, we propose a new Low-Reynolds-Number (LRN)one-equation model, which is derived from an LRN two-equation(k-ε) model. The derivation of the transport equation, in principle, is based on the assumption that the turbulent structure parameter remains constant. However, the relation for the turbulent structure parameter a 1(=|− |/k) is modified to account for near-wall turbulence. As a result, the present one-equation model contains a term which takes the near-wall limiting behavior explicitly into account. Thus, the present model provides the correct wall-limiting behavior of turbulence in the vicinity of the wall and can be applied to the analysis of heat transfer. The validity of the present model is tested in channel flows, boundary layer flows with and without pressure gradient, plane wall jet, and flow with separation and reattachment. The calculated results showed good agreement with the direct numerical simulation (DNS) and experimental data. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
A computational method has been developed to predict the turbulent Reynolds stresses and turbulent heat fluxes in ducts by different turbulence models. The turbulent Reynolds stresses and other turbulent flow quantities are predicted with a full Reynolds stress model (RSM). The turbulent heat fluxes are modelled by a SED concept, the GGDH and the WET methods. Two wall functions are used, one for the velocity field and one for the temperature field. All the models are implemented for an arbitrary three‐dimensional channel. Fully developed condition is achieved by imposing cyclic boundary conditions in the main flow direction. The numerical approach is based on the finite volume technique with a non‐staggered grid arrangement. The pressure–velocity coupling is handled by using the SIMPLEC‐algorithm. The convective terms are treated by the van Leer scheme while the diffusive terms are handled by the central‐difference scheme. The hybrid scheme is used for solving the ε equation. The secondary flow generation using the RSM model is compared with a non‐linear kε model (non‐linear eddy viscosity model). The overall comparison between the models is presented in terms of the friction factor and Nusselt number. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
We studied numerically the heat transfer for a turbulent flow of supercritical helium. A finite difference model is constructed with three different models of turbulence: the mixing length,k- andk-ε model. The stationary results compared to experimental data reveal that the mixing length model gives the best prediction of turbulence in this situation. A severe deterioration from the widely used Nusselt correlation by Giarratano is observed for cases near the pseudocritical temperature, while a far better correspondance is found with the more recent Yaskin correlation. The maxima and minima in the heat transfer curves can be understood by interpretation of the wall and bulk temperature together with the strong changes in density.  相似文献   

19.
This paper reports the numerical modeling of turbulent flow and convective heat transfer over a wavy wall using a two equations eddy viscosity turbulence model. The wall boundary conditions were applied by using a new zonal modeling strategy based on DNS data and combining the standard k– turbulence model in the outer core flow with a one equation model to resolve the near-wall region.It was found that the two-layer model is successful in capturing most of the important physical features of a turbulent flow over a wavy wall with reasonable amount of memory storage and computer time. The predicted results show the shortcomings of the standard law of the wall for predicting such type of flows and consequently suggest that direct integrations to the wall must be used instead. Moreover, Comparison of the predicted results of a wavy wall with that of a straight channel, indicates that the averaged Nusselt number increases until a critical value is reached where the amplitude wave is increased. However, this heat transfer enhancement is accompanied by an increase in the pressure drop.  相似文献   

20.
湍流冲击射流流动与传热的数值研究进展   总被引:15,自引:0,他引:15  
陈庆光  徐忠  张永建 《力学进展》2002,32(1):92-108
湍流冲击射流由于其冲击表面时具有很高的局部传热率和冲击力,被广泛应用于如表面的加热、电子元件的冷却、纸张的干燥和材料的切割等工程应用和工业过程中.由于其流动的复杂性,也常被作为一种理想的测试实例来评价湍流模型的性能.此外,湍升力射流与地面之间的空气动力作用对V/STOL (垂直或短距离起落)飞机的性能具有很大的影响.长期以来,人们从理论分析、实验测量和数值模拟方面对冲击射流进行了广泛而系统的研究,积累了丰富的资料.本文在分析了湍流冲击射流的数值研究现状的基础上,对近年来有关湍流冲击射流流动与传热的数值研究方面的文献有选择地进行了综述,重点评述了不同湍流模型对冲击射流流动与传热的预测能力,讨论了存在的问题并对该领域今后的研究方向进行了展望.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号