首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The double mercury salt [Hg(C5H8N2)2][HgClI3]·C2H6OS was prepared and its structure characterized. The [Hg(C5H8N2)2]2+ cation lies about an inversion centre and the [HgClI3]2? anion lies on a mirror plane. Cations and anions are linked to form a one‐dimensional polymer by weak Hg?Cl interactions [Hg?Cl 3.3744 (3) Å]. The mercury–carbene bond distance [2.076 (7) Å] is typical of a dicationic mercury–carbene species.  相似文献   

2.
The title compound, [HgI2(CH4N2S)2]·2C11H6N2O, is comprised of the Hg(II)–thiourea complex and free 4,5-diazafluoren-9-one (DAFONE). The complex assumes a distorted tetrahedral geometry at mercury formed by two thiourea molecules and two I? ions, the S–Hg–S angle [103.7°] being significantly smaller than S–Hg–I angles (115.2 and 114.3°). The complex and DAFONE molecules link to each other via hydrogen bonding to form a supramolecular structure. Significant π–π stacking is observed between neighboring DAFONE molecules.  相似文献   

3.
The reaction of dibenzenediselenide, (SePh)2, with mercury in refluxing xylene gives bis(benzeneselenolato)mercury(II), [Hg(SePh)2], in a good yield. (nBu4N)[Hg(SePh)3] is obtained by the reaction of [Hg(SePh)2] with a solution of [SePh] and (nBu4N)Br in ethanol. The solid state structures of both compounds have been determined by X-ray diffraction. The mercury atom in [Hg(SePh)2] (space group C2, a = 7.428(2), b = 5.670(1), c = 14.796(4) Å, β = 103.60(1)°) is linearly co-ordinated by two selenium atoms (Hg–Se = 2.471(2) Å, Se–Hg–Se = 178.0(3)°). Additional weak interactions between the metal and selenium atoms of neighbouring molecules (Hg…Se = 3.4–3.6 Å) associate the [Hg(SePh)2] units to layers. The crystal structure of (nBu4N)[Hg(SePh)3] (space group P21/c, a = 9.741(1), b = 17.334(1), c = 21.785(1) Å, β = 95.27(5)°) consists of discrete complex anions and (nBu4N)+ counter ions. The coordination geometry of mercury is distorted trigonal-planar with Hg–Se distances ranging between 2.5 and 2.6 Å.  相似文献   

4.
Mercury(II) exhibits a strong preference for linear coordination which has been attributed to relativistic effects splitting the 6p orbitals and promoting sp hybridization. If the two ligands attached to the mercury(II) ion are weak donors, the metal ion can act as a good Lewis acid and expand its coordination number. Moreover, mercury has a special affinity for softer bases, such as S and N atoms, and has much less affinity for hard bases, such as those including an O atom. The asymmetric unit of dichlorido[tris(piperidin‐1‐yl)phosphane oxide‐κO]mercury(II)–dichloridomercury(II) (2/1), [HgCl2{(C5H10N)3PO}]2·[HgCl2], is composed of one HgCl2{(C5H10N)3PO} complex and one half of a discrete HgCl2 entity located on an inversion centre. The coordination environment around the HgII centre in the complex component is a distorted T‐shape. Bond‐valence‐sum calculations confirm the three‐coordination mode of the HgII atom of the complex molecule. The noncovalent nature of the Hg…Cl and Hg…O interactions in the structure are discussed.  相似文献   

5.
The title compounds, bis­[1,2‐dicarba‐closo‐dodecaboran(12)‐1‐yl]­mercury(II) di­chloro­methane solvate, [Hg(C2B10H11)2]·CH2Cl2, (I), and bis­[1,12‐dicarba‐closo‐dodecaboran(12)‐1‐yl]­mercury(II) tetra­hydro­furan solvate, [Hg(C2B10H11)2]·C4H8O, (II), were prepared in excellent yields using a robust synthetic procedure involving the reaction of HgCl2 with the appropriate monoli­thiocarborane. X‐Ray analysis of the products revealed strong interactions between the Hg atoms in both complexes and the respective lattice solvent. The distances between the HgII centers and the Cl atoms of the dichloromethane solvent molecule in the ortho‐carborane derivative, (I), and the O atom of the tetra­hydro­furan molecule in the para‐carborane complex, (II), are shorter than the sums of the van der Waals radii for Hg and Cl (3.53 Å), and Hg and O (3.13 Å), respectively, indicating moderately strong interactions. There are two crystallographically independent mol­ecules in the asymmetric unit of both compounds, which, in each case, are related by differing relative positions of the cages.  相似文献   

6.
The formation of homoligand mercury(II) complexes with aspartic acid (H2Asp) and aspartate-chelant mixed-ligand mercury(II) complexes with iminodiacetic acid (H2Ida, IDA), 2-hydroxyethyliminodiacetic acid (H2Heida, HEIDA), and nitrilotriacetic acid (H3Nta, NTA) in an aqueous perchlorate medium was studied by spectrophotometry and pH-potentiometric titration. The following complexes were identified: [Hg(OH)Asp]?, [HgAsp2]2?, [Hg(Asp)Ida]2?, [Hg(Asp)Heida]2?, and [Hg(Asp)Nta]3?. The logarithms of their stability constants are, respectively, 11.74 ± 0.12, 20.18 ± 0.17, 20.11 ± 0.10, 19.82 ± 0.09, 19.48 ± 0.11, and 20.58 ± 0.07 (μ = 0.1 (NaClO4), t = (20 ± 2)°C). The hydrogen and hydroxyl competition regions were located in the systems, and relationships between the molar yields of complex species and the reactant concentrations were established. The protonation and dissociation constants of aspartic acid were derived from pH-potentiometric titrations. Experimental data were analyzed using mathematical models allowing one to judge the existence of various complex species in the solution and to identify the species that are sufficient to reproduce the observed data.  相似文献   

7.
A new host-guest complex (dibenzo-18-crown-6)bis(thiocyanato-S)mercury(II), [Hg(SCN)2(DB18C6], was synthesized and studied by X-ray diffraction method. The crystal structure (space group P21/n, a = 19.372, b = 8.199, c = 31.799 Å, β = 103.58°, Z = 8) was solved by the direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.092 for 6392 independent reflections; CAD-4 autodiffractometer, λMoK α. In two independent similar complex molecules, the Hg2+ cation lies in the cavity of the DB18C6 crown ligand and is coordinated by all the six O atoms and is covalently bonded to two S atoms of the SCN? ligands lying on the opposite sides of the mean plane of the six O atoms of the DB18C6 ligand. The coordination polyhedron of two independent Hg atoms is a distorted hexagonal bipyramid. Both independent DB18C6 ligands have the “butterfly” conformation with the approximate C 2v symmetry.  相似文献   

8.
Reactions of mercury(II) with iminodiacetic (H2Ida), 2-hydroxyethyliminodiacetic (H2Heida), and nitrilotriacetic acids (H3Nta) were studied by spectrophotometry and pH potentiometry. The resulting complexes included [HgIda], [Hg(OH)Ida]?, [HgIda2]2?, [HgHeida], [Hg(OH)Heida]?, [Hg(Heida)2]2?, [HgNta]?, [HgNta2]4?, [Hg(Ida)Heida]2?, [Hg(Ida)Nta]3?, and [Hg(Heida)Nta]3?. The logarithms of their stability constants calculated for I = 0.1 (NaClO4) and T = 20 ± 2°C were 11.14 ± 0.07, 20.33 ± 0.08, 19.40 ± 0.10, 11.42 ± 0.04, 19.68 ± 0.11, 18.48 ± 0.09, 13.42 ± 0.05, 20.80 ± 0.08, 19.05 ± 0.06, 20.64 ± 0.11, and 20.53 ± 0.16, respectively. The experimental data were analyzed in terms of the mathematical models that predict the existence of a wide spectrum of complex species in solution and allow one to consider only those species that are sufficient for accurate reproduction of the observed pattern.  相似文献   

9.
Sulfite ion was determined in the 0.4 to 12-ppm range by reaction with insoluble mercury(I) chloride to form the soluble Hg(SO3)2staggered2? ion and elemental mercury. The uv absorption of the sulfite complex or an anion species, HgX4staggered2?, formed on adding an excess of KBr, KCl, KI, or KSCN is measured. The mercury(II) in solution can also be determined by lowering the pH, adding KCl, and forming the crystal violet adduct of the HgCl3staggered? ion. This adduct is extracted into benzene and the absorbance measured at 605 nm.  相似文献   

10.
The reaction of mercury(II) chloride with neutral phosphine telluride ligands (R3PTe) produced new mercury(II) complexes, HgCl2(R3PTe)2 [R = Me2N (1), Et2N (2), C4H8N (3), C5H10N (4) or n-Bu (5)]. Attempts to isolate the complex of HgCl2 with the morpholinyl ligand, (OC4H8N)3PTe, were unsuccessful. Complexes 15 have been characterized by elemental analyses, IR, and multinuclear (31P, 125Te, and 199Hg) NMR spectroscopy. The solution behavior of the complexes was investigated using variable temperature NMR spectroscopy in the presence of excess ligand and indicated fast ligand exchange on the NMR timescale at room temperature. The metal–ligand exchange barriers in these complexes were estimated to be in the range 8–11 kcal/mol. The results suggest that a slight change in the nature of the substituents on the phosphorus of the ligand can contribute considerably to the lability of the complex obtained. The NMR data are discussed and compared with those obtained for related phosphine chalcogenide systems.  相似文献   

11.
The title compound, [Hg(C4H4N2S)(C4H3N2S)]2[HgBr4], con­sists of [Hg(pymt)(pymtH)]+ complex cations (pymtH is pyrimidine‐2‐thione) lying across twofold rotation axes in space group Fddd, with linearly coordinated mercury at an Hg—S distance of 2.357 (3) Å, and [HgBr4]2− anions lying at sites of 222 symmetry. The Hg atom is additionally coordinated by two N and two Br atoms, forming a 2+4 effective coordination sphere. The protonated ligand is connected via N—H⋯N hydrogen bonds to the neighbouring unprotonated ligand, thus forming infinite chains of cations.  相似文献   

12.
Mononuclear silver and mercury complexes bearing bis-N-heterocyclic carbene (NHC) ligands with linear coordination modes have been prepared and structurally characterised. The complexes form metallocyclic structures that display rigid solution behaviour. A larger metallocycle of the form [L2Ag2]2+ [where L = para-bis(N-methylimidazolylidene)xylylene] has been isolated from the reaction of para-xylylene-bis(N-methylimidazolium) chloride and Ag2O. Reaction of silver- and mercury-NHC complexes with Pd(NCCH3)2Cl2 affords palladium-NHC complexes via NHC-transfer reactions, the mercury case being only the second example of a NHC-transfer reaction using a mercury-NHC complex.  相似文献   

13.
A new mercury(II)-organic polymeric complex generated from 2,5-bis(3-pyridyl)-1,3,4-oxadiazole (3-bpo) as an angular dipyridyl derivative ligand, [Hg(3-bpo)2(SCN)2], was prepared from reactions of ligand 3-bpo with mercury(II) thiocyanate. The compound was characterized by elemental analysis, IR-, 1H NMR-, 13C NMR-spectroscopy and structurally determined by X-ray single crystal diffraction. The thermal stability of [Hg(3-bpo)2(SCN)2] was studied by thermal gravimetric (TG) and differential thermal analyses (DTA).  相似文献   

14.
A new mercury iodide complex of dppf, [HgI2(dppf)] (adduct 1 , dppf = 1,1‐bis(diphenylphosphino)ferrocene) was prepared and characterized. Single crystal X‐ray diffraction analysis established that the compound crystallizes in the monoclinic system, space group C2c, with a = 34.992(3), b = 10.236(5), c = 18.765(4) Å, β = 99.410(2)°, Z = 8, V = 6631.2(9) Å3. The coordination about the mercury atom is tetrahedral with two equivalent Hg–I and Hg–P bonds. Dppf functions as a chelating ligand. The nonlinear optical (NLO) properties were studied with an 8 ns‐pulsed laser at 532 nm. Its optical responses to the incident light exhibit weak optical absorptive and strong refractive effects, with n2 = 6.86 × 10–18 m2 · W–1 in a 2.48 × 10–4 mol · dm–3 DMF solution.  相似文献   

15.
N-Benzoyl-N-phenylhydroxylamine (BPHA) is suggested for the gravimetric determination of mercury(II) at pH 3.0–6.0; the precipitate, Hg(C13H10O2N)2, is dried at 105° and weighed. Separation from NH4+, Pb, Bi, Sb, As, Cd, Sn, etc. is possible, but chloride, cyanide and (EDTA) interfere. Mercury(II) can also be extracted with a BPHA solution in chloroform: the extracted mercury complex is yellow and shows an absorbance maximum at 340 mμ. The optimum concentration range for determination is 15–52 μg Hg/ml, the molar extinction coefficient is 2693 ±10 and the sensitivity is 0.075 μg/cm2. Interferences are similar to those found in the gravimetric method.  相似文献   

16.
Two differently hydrated crystal forms of the title compound, viz. bis­(acetato‐κ2O,O′)(2,9‐di­methyl‐1,10‐phenanthroline‐κ2N,N′)­mercury(II), [Hg(C2H3O2)2(C14H12N2)] or [HgAc2(dmph)] [dmph is 2,3‐di­methyl‐1,10‐phenantroline (neocuproine) and Ac is acetate], (I), and tris­[bis­(acetato‐κ2O,O′)(2,9‐di­methyl‐1,10‐phenanthroline‐κ2N,N′)­mercury(II)] hexadecahydrate, [Hg(C2H3O2)2(C14H12N2)]3·16H2O or [HgAc2(dmph)]3·16H2O, (II), are presented. Both structures are composed of very simple monomeric units, which act as the building blocks of complex packing schemes stabilized by a diversity of π–π and hydrogen‐bonding interactions.  相似文献   

17.
The mercury(II) metal crown ether ( 2a ) was obtained in high yield by reaction of the carbene precursor 1,2‐bis[N‐(1‐naphthylmethylene)imidazoliumethoxy]benzene dihexafluorophosphate ( 1 ) and Hg(OAc)2. Addition of NaI to the acetone solution of 2a resulted in precipitation of pale yellow solid 2b . The structures of 2a and 2b were determined by single‐crystal X‐ray diffractometry. Both molecules display a helical conformation with a torsional cycle. The mercury atom in complex 2a is tricoordinated by two intramolecular carbene carbon atoms and an acetate oxygen atom. The mercury atom in complex 2b is tetracoordinated by two intramolecular carbene carbon atoms and two cis‐iodine atoms.  相似文献   

18.
Mercury(II) complexes with aspartic (H2Asp) and tartaric acids (H2Tart) and heteroligand mercury(II) complexes with H2Asp, H2Tart, and citric acids (H3Cit) were studied by spectrophotometry in aqueous solutions with I = 0.1(NaClO4) at 20 ± 2°C. It was found that the complexation in both binary and ternary systems depends on the concentrations of the reagents and the pH of the medium. The resulting complexes included [HgAsp], [Hg(OH)Asp]?, [HgAsp2]2?, [HgTart], [Hg(OH)Tart]?, [Hg(OH)2Tart]2?, [HgAspCit]3?, [HgAspTart]2?, and [Hg(OH)AspTart]3?. The logarithms of their stability constants were 11.74 ± 0.12, 20.18 ± 0.17, 20.11 ± 0.10, 5.40 ± 0.11, 15.52 ± 0.09, 24.70 ± 0.12, 19.19 ± 0.12, 14.55 ± 0.16 and 23.80 ± 0.14, respectively. The experimental data were analyzed in terms of the mathematical models that predict the existence of a wide spectrum of complex species in solution and allow one to consider only those species that are sufficient for accurate reproduction of the observed pH-dependence of the optical density.  相似文献   

19.
A comprehensive study by means of a mercury pool and a glass pH electrode was made of the equilibria involved in aqueous solutions containing varied concentrations of mercury(II) and triethylenetramine, in the pH range 2.0–12.0 at 25°C with potassium nitrate used to adjust the ionic strength to unity. Only the 1:1 complex, Hg(II) trien2+, having a stability constant of 1024.53±0.10 was found in the entire pH range using the entirely independent Bjerrum and Leden methods.  相似文献   

20.
The Hg atom in the title monomeric complex, di­chloro­bis(3‐imidazolium‐2‐thiol­ato‐S)­mercury(II), [HgCl2(C3H4N2S)2], is four‐coordinate having an irregular tetrahedral geometry composed of two Cl atoms [Hg—Cl 2.622 (2) and 2.663 (2) Å] and two thione S atoms [Hg—S 2.445 (2) and 2.462 (2) Å]. The monodentate thione ligand adopts a zwitterionic form and exists as the 3‐imidazolium‐2‐thiol­ate ion. The bond angle S1—Hg—S2 of 130.87 (8)° has the greatest deviation from ideal tetrahedral geometry. Intermolecular hydrogen bonds between two of the four N—H groups and one of the Cl atoms [3.232 (8) and 3.238 (7) Å] stabilize the crystal structure, while the other two N—H groups contribute through the formation of N—H?Cl intramolecular hydrogen bonds with the other Cl atom [3.121 (7) and 3.188 (7) Å].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号