首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present an integrated computational tool, rooted in density functional theory, the polarizable continuum model, and classical molecular dynamics employing spherical boundary conditions, to study the spectroscopic observables of molecules in solution. As a test case, a modified OPLS-AA force field has been developed and used to compute the UV and NMR spectra of acetone in aqueous solution. The results show that provided the classical force fields are carefully reparameterized and validated, the proposed approach is robust and effective, and can also be used by nonspecialists to provide a general and powerful complement to experimental techniques.  相似文献   

2.
3.
We investigated electrical transport properties of lanthanide series in liquid phase using the self-consistent approximation employed by Khajil and Tomak [Phys Stat. Sol. B, 134 (1), 321–324 (1986)]. We used our model potential by implemented ionic and atomic radius which is incorporated with the Charged Hard Sphere, One Component Plasma and General Mean Spherical Approximation reference systems to study the electronic transport properties like electrical resistivity (ρ), thermal conductivity (σ) and thermoelectric power (Q). The screening effect on aforesaid properties has been studied by using different screening functions. The correlations of our results and others data within addition experimental values are profoundly promising to the scientists working in this field.  相似文献   

4.
The role played by electronic polarization in the dielectric properties of liquid N-methyl acetamide (NMA) is examined using molecular dynamics simulations with a polarizable force field based on classical Drude oscillators. The model presented is the first force field shown to reproduce the anomalously large dielectric constant of liquid NMA. Details of the molecular polarizability are found to be important. For instance, all elements of the polarizability tensor, rather then just the trace, impact on the condensed phase properties. Two factors related to electronic polarizability are found to contribute to this large dielectric constant. First is the significant enhancement of the mean amide molecular dipole magnitude, which is 50% larger in the liquid than in the gas phase. Second is the consequent strong hydrogen bonding between molecular neighbors that enhances the orientational alignment of the molecular dipoles. Polarizable models of amide compounds that have two (acetamide) and zero (N,N-dimethyl acetamide) polar hydrogen-bond donor atoms are also investigated. Experimentally, the neat liquid dielectric constants at 373 K are 100 for NMA, 66 for acetamide and 26 for N,N-dimethyl acetamide. The polarizable models replicate this trend, predicting a dielectric constant of 92+/-5 for NMA, 66+/-3 for acetamide and 23+/-1 for N,N-dimethyl acetamide.  相似文献   

5.
We have evaluated the extent to which classical polarizable force fields, based either on the chemical potential equalization principle or on distributed polarizabilities in the framework of the Sum of Interactions Between Fragments Ab initio computed (SIBFA), can reproduce the ab initio polarization energy and the dipole moment of three distinct water oligomers: bifurcated chains, transverse hydrogen-bonded chains, and longitudinal hydrogen-bonded chains of helical shape. To analyze the many-body polarization effect, chains of different size, i.e., from 2 to 12 water monomers, have been considered. Although the dipole moment is a well-defined quantity in both classical polarizable models and quantum mechanical methods, polarization energy can be defined unequivocally only in the former type of approaches. In this study we have used the Kitaura-Morokuma (KM) procedure. Although the KM approach is on the one hand known to overestimate the polarization energy for strongly interacting molecules, on the other hand it can account for the many-body polarization effectively, whereas some other procedures do not. Our data show that, if off-centered lone pair polarizabilities are explicitly represented, classical polarizable force fields can afford a close agreement with the ab initio results, both in terms of polarization energy and in terms of dipole moment.  相似文献   

6.
Electronic structures at the Si/SiO2/molecule interfaces were studied by Kelvin probe techniques (contact potential difference) and compared to theoretical values derived by the Helmholtz equation. Two parameters influencing the electronic properties of n-type <100> Si/SiO2 substrates were systematically tuned: the molecular dipole of coupling agent molecules comprising the layer and the surface coverage of the chromophoric layer. The first parameter was checked using direct covalent grafting of a series of trichlorosilane-containing coupling agent molecules with various end groups causing a different dipole with the same surface number density. It was found that the change in band bending (DeltaBB) clearly indicated a major effect of passivation due to two-dimensional polysiloxane network formation, with minor differences resulting from the differences in the end groups' capacity to act as "electron traps". The change in electron affinity (DeltaEA) parameter increased upon increasing the dipole of the end group comprising the monolayer, resulting in a range of 600 mV. Moreover, a shielding effect of the aromatic spacer compared with the aliphatic spacer was found and estimated to be about 200 mV. The density effect was examined using the 4-[4-(N,N-dimethylamino phenyl)azo]pyridinium halide chromophore which has a calculated dipole of more than 10 D. It was clearly shown that upon increasing surface chromophoric coverage an increase in the electronic effects on the Si substrate was observed. However, a major consequence of depolarization was also detected while comparing the experimental and calculated values.  相似文献   

7.
Adequate representation of the interactions that take place between water molecules has long been a goal of force field design. A full understanding of how the molecular charge distribution of water is altered by adjacent water molecules and by the hydrogen-bonding environment is a vital step toward achieving this task. For this purpose we generated ab initio electron densities of pure water clusters and hydrated serine and tyrosine. Quantum chemical topology enabled the study of a well-defined water molecule inside these clusters, by means of its volume, energy, and multipole moments. Intra- and intermolecular charge transfer was monitored and related to the polarization of water in hydrogen-bonded networks. Our analysis affords a way to define different types of water molecules in clusters.  相似文献   

8.
In this paper, four kinds of polymer-stabilized blue phase liquid crystals (PS-BPLCs) with different monomer were designed and prepared. The morphology, temperature ranges and electro-optical properties of the blue phase were studied and discussed. The temperature ranges of four BPLCs are more than 90°C, and all samples can be stabilized well at room temperature. Referring to electro-optical performance, on-state voltage for mono-functional monomers systems is reduced from 75 V to 65 V at 497 nm. On-state voltage for tri-functional monomers systems is reduced from 107 V to 85 V at 497 nm. These results are helpful to the application of display and photonic devices.  相似文献   

9.
Summary The dipole moments and dipole polarizabilities of the 1A1, 1B1, and 3B1 electronic states of the water molecule have been calculated by using the CASSCF approach followed by the evaluation of the dynamic electron correlation contribution by the second-order perturbation scheme CASPT2. All calculations have been carried out in a specifically extended ANO basis set which accounts for the Rydberg character of the two excited states. In order to estimate the correctness and accuracy of the present data a scan over a variety of different active spaces for the CASSCF wave function has been made. The present results are superior to earlier CASSCF calculations, although their qualitative features remain essentially the same. The dipole moments in 1B1 and 3B1 states are predicted to be about 0.49 a.u. and 0.33 a.u., respectively, and have the opposite orientation with respect to the ground state dipole moment. The dipole polarizability tensors of the excited states are characterized by high anisotropy and are dominated by the in-plane component perpendicular to the symmetry axis. All their components are found to be about an order of magnitude larger than those of the ground state polarizability tensor. The excitation energy dependence on the choice of the active orbital space in the CASSCF reference function is also considered and the analysis of the present data concludes in the concept of what is called the mutually compatible active spaces for the two states involved in excitation. All CASPT2 results are in good agreement with the results of recent calculations carried out in the framework of the open-shell coupled cluster formalism. This agreement confirms the high efficiency of the CASSCF/CASPT2 approach to the treatment of the electron correlation effects.  相似文献   

10.
11.
12.
13.
14.
Results obtained from nonrelativistic electronic structure calculations using finite Gaussian basis sets are extrapolated to the limit of a complete basis set, employing the results of explicitly correlated coupled-cluster calculations including singles and doubles substitutions (CCSD). For N2, the basis-set limits for the electronic binding energy, equilibrium bond length and harmonic vibrational wave number are established for the CCSD model including a perturbative correction for triples substitutions and for the internally contracted multireference configuration interaction method. The resulting numbers are in good agreement with experimental values. Received: 2 December 1997 / Accepted: 3 February 1998 / Published online: 17 June 1998  相似文献   

15.
The L and D isomers of the tryptophan (Trp) molecule and the (Trp)+ cation in the gas phase and water are calculated at the DFT level to reveal the effect of water considered in the dielectric continuum approximation on the electronic characteristics of the molecule. The distribution of effective atomic charges and bond lengths enables the prediction of the most probable parts of the chemical bond cleavage during the fragmentation of the molecule under the ionizing particle flux. These data are supplemented with a calculation of fragmentation energies. Zwitterionic structures characterized by the appearance of considerable dipole moments and a change in their orientation with respect to the ground state are distinguished among the possible isomeric forms in water.  相似文献   

16.
It has been demonstrated that the 0‐0 absorption transition of poly(3‐hexylthiophene) (P3HT) in blends with poly(ethylene oxide) (PEO) could be rationally tuned through the control of the liquid–liquid phase separation process during solution deposition. Pronounced J‐like aggregation behavior, characteristic for systems of a low exciton band width, was found for blends where the most pronounced liquid–liquid phase separation occurred in solution, leading to domains of P3HT and PEO of high phase purity. Since liquid–liquid phase separation could be readily manipulated either by the solution temperature, solute concentration, or deposition temperature, to name a few parameters, our findings promise the design from the out‐set of semiconductor:insulator architectures of pre‐defined properties by manipulation of the interaction parameter between the solutes as well as the respective solute:solvent system using classical polymer science principles. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 304–310  相似文献   

17.
Different types of columns with specific structural properties were used for the separation of mixtures of ionic liquid cations. Two of them were home-made packings and the other two were commercial stationary phases. One of the home-made packings contained cholesterol ligands bonded chemically to silica (SG-CHOL) whereas the other one was a mixed stationary phase (SG-MIX) with cyanopropyl, aminopropyl, phenyl, octyl, and octadecyl ligands. RP-18e Innovation ChromolithTM Performance and Macrosphere 300 C4 packings were also used. A comparison of the separation possibilities offered by these columns for the substances in question revealed significant differences in performance. Packings containing surface-bonded functional groups that are able to undergo protonation are not suitable for separation of such compounds under the given analysis conditions (pH = 4). The best results were obtained for two alkyl stationary phases: butyl and octadecyl. Cluster analysis has also been performed for comparison of the ionic liquid cation properties.  相似文献   

18.
The dissociation dynamics of a dichromatically laser-driven diatomic Morse molecule vibrating in the ground state is investigated by applying tools of the nonlinear theory of classical Hamiltonian systems. Emphasis is placed on the role of the relative phase of the two fields, phi. First, it is found that, just like in quantum mechanics, there is dependence of the dissociation probability on phi. Then, it is demonstrated that addition of the second laser leads to suppression of probability (stabilization), when the intensity of the first laser is kept constant just above or below the single laser dissociation threshold. This "chemical bond hardening" diminishes as phi increases. These effects are investigated and interpreted in terms of modifications in phase space topology. Variations of phi as well as of the intensity of the second laser may cause (i) appearance/disappearance of the stability island corresponding to the common resonance with the lowest energy and (ii) deformation and movement of the region of Kolmogorov-Arnold-Moser tori that survive from the undriven system. The latter is the main origin in phase space of stabilization and phi dependence. Finally, it is shown that the use of short laser pulses enhances both effects.  相似文献   

19.
We investigate the interactions of polarizable solutes in water as a function of the solute permittivity. A generic and computationally efficient simulation methodology for the investigation of systems involving dielectric discontinuities is introduced. We report results for interactions between two polarizable cylindrical solutes of nanometer dimensions, which demonstrate that the interactions between the solutes strongly depend on the solute permittivity epsilon. For low permittivity, epsilon approximately 1-2, the interactions are dominated by surface tension forces whose origin lies in the formation of a vapor cavity between the two hydrophobic solutes. This effect leads to a drying transition, where the intersolute force changes discontinuously at a specific solute-solute separation. We find that a moderate permittivity, epsilon approximately 20, enhances the solvation of the polarizable objects inhibiting this drying transition. In the limit of moderately high permittivity, the interactions are dominated by solvation forces. These forces are much larger than those calculated using macroscopic models of dielectrics, which consider water as a continuum dielectric medium. Our results emphasize the importance of including the solvent explicitly to investigate dielectric discontinuities and interactions between polarizable media in water.  相似文献   

20.
A series of metal naphthalocyanine complexes (M = TiO2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Ru2+) have been investigated using density functional theory (DFT) and time-dependent DFT methods in vacuo and in the solvent dimethylsulfoxide in order to evaluate the influence of the different metal atoms on the geometries and optical properties of their complexes. The optimized geometries for the complexes without an axial ligand exhibit planar conformations. Most of the absorption bands of the metal complexes are blue-shifted compared to those of the metal-free naphthalocyanine, both in vacuo and in the solvent. The various transition metals could gradually tune the electronic and spectroscopic properties of their naphthalocyanine complexes, which may provide valuable information for tuning the properties of naphthalocyanine complexes for various applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号