首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A time-accurate, finite volume method for solving the three-dimensional, incompressible Navier-Stokes equations on a composite grid with arbitrary subgrid overlapping is presented. The governing equations are written in a non-orthogonal curvilinear co-ordinate system and are discretized on a non-staggered grid. A semi-implicit, fractional step method with approximate factorization is employed for time advancement. Multigrid combined with intergrid iteration is used to solve the pressure Poisson equation. Inter-grid communication is facilitated by an iterative boundary velocity scheme which ensures that the governing equations are well-posed on each subdomain. Mass conservation on each subdomain is preserved by using a mass imbalance correction scheme which is secondorder-accurate. Three test cases are used to demonstrate the method's consistency, accuracy and efficiency.  相似文献   

2.
A numerical study of laminar flows is carried out to examine the performance of two second-order discretization schemes: a total variation diminishing scheme and a second-order upwind scheme. The former has the same form as the standard first-order hybrid central upwind scheme, but with a numerical diffusion reduced by the Van Leer limiter; the latter is based on the linear extrapolation of cell face values using the two upwind neighbors. A collocated grid arrangement is used; oscillations which could be generated by pressure–velocity decoupling are avoided via the Rhie–Chow interpolation. Two iterative solution methods are used: (i) the deferred correction procedure proposed by Khosla and Rubin and (ii) implicit treatment of the second-order upwind contribution. Three two-dimensional laminar test cases are considered for assessment: the plane lid-driven cavity, the plane backward facing step and the axisymmetric pipe with sudden contraction. Experimental data are available for the two last cases. Both the total variation diminishing and the second-order upwind schemes give wiggle-free results and can predict the flowfields more accurately than the standard first-order hybrid central upwind scheme. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
The use of the velocity-pressure formulation of the Navier-Stokes equations for the numerical solution of fluid flow problems is favoured for free-surface problems, more involved flow configurations, and three-dimensional flows. Many engineering problems involve such features in addition to strong inertial effects. The computational instabilities arising from central-difference schemes for the convective terms of the governing equations impose serious limitations on the range of Reynolds numbers that can be investigated by the numerical method. Solutions for higher Reynolds numbers Re > 1000 could be reached using upwind-difference schemes. A comparative study of both schemes using a method based on the primitive variables is presented. The comparison is made for the model problem of the driven flow in a square cavity. Using a central scheme stable solutions of the pressure and velocity fields were obtained for Reynolds numbers up to 5000. The streamfunction and vorticity fields were calculated from the resulting velocity field and compared with previous solutions. It is concluded that total upwind differencing results in a considerable change in the flow pattern due to the false diffusion. For practical calculations, by a proper choice of a small amount of partial upwind differencing the vorticity diffusion near the walls and the global features of the solutions are not sigificantly altered.  相似文献   

4.
A non-linear modelling of the Reynolds stresses has been incorporated into a Navier–Stokes solver for complex three-dimensional geometries. A k–ε model, adopting a modelling of the turbulent transport which is not based on the eddy viscosity, has been written in generalised co-ordinates and solved with a finite volume approach, using both a GMRES solver and a direct solver for the solution of the linear systems of equations. An additional term, quadratic in the main strain rate, has been introduced into the modelling of the Reynolds stresses to the basic Boussinesq's form; the corresponding constant has been evaluated through comparison with the experimental data. The computational procedure is implemented for the flow analysis in a 90° square section bend and the obtained results show that with the non-linear modelling a much better agreement with the measured data is obtained, both for the velocity and the pressure. The importance of the convection scheme is also discussed, showing how the effect of the non-linear correction added to the Reynolds stresses is effectively hidden by the additional numerical diffusion introduced by a low-order convection scheme as the first-order upwind scheme, thus making the use of higher order schemes necessary. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
A numerical model for the compressible Navier–Stokes equations using local mesh embedding is presented. The model solves for three-dimensional turbulent flow using an algebraic mixing length model of turbulence. The technique of control volume upwinding is used to produce a novel treatment, whereby the hanging nodes on the mesh interfaces are left with null control volumes. This yields an efficient discretization scheme which ensures second-order accuracy, flux conservation and stability at the mesh interfaces, whilst retaining a simple interpolative treatment for the hanging nodes. The discrete flow equations are solved using the semi-implicit pressure correction method. The accuracy of the embedded mesh solver is demonstrated by modelling the three-dimensional flow through a cascade of turbine vanes at design and off-design conditions. Mesh embedding gives a saving of 48% in the number of nodes. The embedded mesh solutions compare well with fine structured mesh solutions and experimental measurements. The capability of the embedded mesh solver to perform solution adaptive calculations is demonstrated using a two-dimensional mid-height section of the cascade at the off-design flow conditions.  相似文献   

6.
This paper presents a new higher‐order bounded scheme, weighted‐average coefficient ensuring boundedness (WACEB), for approximating the convective fluxes in solving transport equations with the finite volume difference method (FVDM). The weighted‐average formulation is used for interpolating the variables at cell faces and the weighted‐average coefficient is determined from normalized variable formulation and total variation diminishing (TVD) constraints to ensure the boundedness of solution. The new scheme is tested by solving three problems: (1) a pure convection of a box‐shaped step profile in an oblique velocity field, (2) a sudden expansion of an oblique velocity field in a cavity, and (3) a laminar flow over a fence. The results obtained by the present WACEB are compared with the UPWIND and the QUICK schemes and it is shown that this scheme has at least second‐order accuracy, while ensuring boundedness of solutions. Moreover, it is demonstrated that this scheme produces results that better agree with the experimental data in comparison with other schemes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
A first-order non-conforming numerical methodology, Separation method, for fluid flow problems with a 3-point exponential interpolation scheme has been developed. The flow problem is decoupled into multiple one-dimensional subproblems and assembled to form the solutions. A fully staggered grid and a conservational domain centred at the node of interest make the decoupling scheme first-order-accurate. The discretization of each one-dimensional subproblem is based on a 3-point interpolation function and a conservational domain centred at the node of interest. The proposed scheme gives a guaranteed first-order accuracy. It is shown that the traditional upwind (or exponentially weighted upstream) scheme is less than first-order-accurate. The pressure is decoupled from the velocity field using the pressure correction method of SIMPLE. Thomas algorithm (tri-diagonal solver) is used to solve the algebraic equations iteratively. The numerical advantage of the proposed scheme is tested for laminar fluid flows in a torus and in a square-driven cavity. The convergence rates are compared with the traditional schemes for the square-driven cavity problem. Good behaviour of the proposed scheme is ascertained.  相似文献   

8.
This paper presents a numerical method for fluid flow in complex three-dimensional geometries using a body-fitted co-ordinate system. A new second-order-accurate scheme for the cross-derivative terms is proposed to describe the non-orthogonal components, allowing parts of these terms to be treated implicitly without increasing the number of computational molecules. The physical tangential velocity components resulting from the velocity expansion in the unit tangent vector basis are used as dependent variables in the momentum equations. A coupled equation solver is used in place of the complicated pressure correction equation associated with grid non-orthogonality. The co-ordinate-invariant conservation equations and the physical geometric quantities of control cells are used directly to formulate the numerical scheme, without reference to the co-ordinate derivatives of transformation. Several two- and three-dimensional laminar flows are computed and compared with other numerical, experimental and analytical results to validate the solution method. Good agreement is obtained in all cases.  相似文献   

9.
In this paper, a segregated finite element scheme for the solution of the incompressible Navier-Stokes equations is proposed which is simpler in form than previously reported formulations. A pressure correction equation is derived from the momentum and continuity equations, and equal-order interpolation is used for both the velocity components and pressure. Algorithms such as this have been known to lead to checkerboard pressure oscillations; however, the pressure correction equation of this scheme should not produce these oscillations. The method is applied to several laminar flow situations, and details of the methods used to achieve converged solutions are given.  相似文献   

10.
Large eddy simulations of natural convection along a vertical isothermal surface have been carried out using a parallel CFD code SMAFS (Smoke Movement And Flame Spread) developed by the first author to study the dynamics of the natural convection flow and the associated convective heat transfer, with sub-grid scale turbulence modeled using the Smagorinsky model. In the computation, the filtered governing equations are discretized using finite volume method, with the variables at the cell faces in the finite volume discrete equations approximated by a second order bounded QUICK scheme and the diffusion term computed based on central difference scheme. The computation was time marched explicitly, with momentum equations solved based on a second order fractional-step Adams–Bashford scheme and enthalpy computed using a second order Runge–Kutta scheme. The Poisson equation for pressure from the continuity equation was solved using a multi-grid solver. The results including the temperature and velocity profiles of the boundary layer and the local heat transfer rate are analyzed. Comparison is made with experimental data and good agreement is found.  相似文献   

11.
对流扩散方程QUICK格式的数值摄动高精度重构格式   总被引:2,自引:1,他引:1  
朱可  李明军 《力学学报》2011,43(1):55-62
利用高智提出的数值摄动算法, 把对流扩散方程的常用QUICK格式(黏性和对流项分别用二阶中心和QUICK格式离散)进行了高精度重构, 包括利用离散单元内所有结点的全域重构和分别利用离散单元内上下游结点的上下游重构, 得到两类新的更高阶精度的数值摄动重构格式, 称为高的QUICK格式(G-QUICK格式). G-QUICK格式与QUICK格式相比简单性相当, 但精度更高; 全域重构G-QUICK格式和QUICK格式均为条件稳定, 上下游重构得到一些绝对稳定的G-QUICK格式. 解析分析和数值算例均证实了G-QUICK格式的优良性能, 上下游重构的G-QUICK格式为在对流扩散方程的QUICK格式中避免使用人工黏性提供了新途径.   相似文献   

12.
The immiscible displacement problem in reservoir engineering can be formulated as a system of partial differential equations which includes an elliptic pressure–velocity equation and a degenerate parabolic saturation equation. We apply a sequential numerical scheme to this problem where time splitting is used to solve the saturation equation. In this procedure one approximates advection by a higher-order Godunov method and diffusion by a mixed finite element method. Numerical results for this scheme applied to gas–oil centrifuge experiments are given.  相似文献   

13.
A generalized formulation is applied to implement the quadratic upstream interpolation (QUICK) scheme, the second-order upwind (SOU) scheme and the second-order hybrid scheme (SHYBRID) on non-uniform grids. The implementation method is simple. The accuracy and efficiency of these higher-order schemes on non-uniform grids are assessed. Three well-known bench mark convection-diffusion problems and a fluid flow problem are revisited using non-uniform grids. These are: (1) transport of a scalar tracer by a uniform velocity field; (2) heat transport in a recirculating flow; (3) two-dimensional non-linear Burgers equations; and (4) a two-dimensional incompressible Navier-Stokes flow which is similar to the classical lid-driven cavity flow. The known exact solutions of the last three problems make it possible to thoroughly evaluate accuracies of various uniform and non-uniform grids. Higher accuracy is obtained for fewer grid points on non-uniform grids. The order of accuracy of the examined schemes is maintained for some tested problems if the distribution of non-uniform grid points is properly chosen.  相似文献   

14.
基于非结构化同位网格的SIMPLE算法   总被引:4,自引:1,他引:4  
通过基于非结构化网格的有限体积法对二维稳态Navier—Stokes方程进行了数值求解。其中对流项采用延迟修正的二阶格式进行离散;扩散项的离散采用二阶中心差分格式;对于压力-速度耦合利用SIMPLE算法进行处理;计算节点的布置采用同位网格技术,界面流速通过动量插值确定。本文对方腔驱动流、倾斜腔驱动流和圆柱外部绕流问题进行了计算,讨论了非结构化同位网格有限体积法在实现SIMPLE算法时,迭代次数与欠松弛系数的关系、不同网格情况的收敛性、同结构化网格的对比以及流场尾迹结构。通过和以往结果比较可知,本文的方法是准确和可信的。  相似文献   

15.
This paper proposes a hybrid vertex-centered finite volume/finite element method for solution of the two dimensional (2D) incompressible Navier-Stokes equations on unstructured grids.An incremental pressure fractional step method is adopted to handle the velocity-pressure coupling.The velocity and the pressure are collocated at the node of the vertex-centered control volume which is formed by joining the centroid of cells sharing the common vertex.For the temporal integration of the momentum equations,an implicit second-order scheme is utilized to enhance the computational stability and eliminate the time step limit due to the diffusion term.The momentum equations are discretized by the vertex-centered finite volume method (FVM) and the pressure Poisson equation is solved by the Galerkin finite element method (FEM).The momentum interpolation is used to damp out the spurious pressure wiggles.The test case with analytical solutions demonstrates second-order accuracy of the current hybrid scheme in time and space for both velocity and pressure.The classic test cases,the lid-driven cavity flow,the skew cavity flow and the backward-facing step flow,show that numerical results are in good agreement with the published benchmark solutions.  相似文献   

16.
采用格子Boltzmann方法(LBM)对过渡区内的微尺度气体流动进行了模拟研究. 在已有滑移区微流动LBM模型中引入Knudsen层速度修正,选取合适的修正函数表达式并依据动理论确定了可调参数的合理取值. 在边界条件的处理格式上,采用了适合过渡区模拟的高阶滑移边界的替代格式来捕捉过渡区微流动的滑移速度,避免了直接求解高阶速度导数项的数值困难. 通过对两类不同的微流动进行模拟的结果表明:与数值解吻合得较好,尤其是对Kn>0.5微流动滑移速度的预测,与已有LBM的模拟结果相比有明显的提高.   相似文献   

17.
Burnett simulations of gas flow in microchannels   总被引:1,自引:0,他引:1  
The Burnett equations with slip boundary conditions are used to model the gas flow in microchannels in transition flow regime. As the Navier-Stokes equations are not appropriate to model the gas flow in this regime, the higher-order Burnett equations are adopted in the present study. In earlier studies, convergent solutions of the Burnett equations of microPoiseuille flow could only be obtained when Knudsen number is less than 0.2. By using a relaxation method on the boundary values, convergent solutions of the Burnett equations can be obtained even when Knudsen number reaches 0.4. The solutions of Burnett equations agree very well with experimental data and direct simulation Monte Carlo (DSMC) results. The pressure distributions and velocity profiles are then discussed in detail.  相似文献   

18.
The paper presents a finite‐volume calculation procedure using a second‐moment turbulence closure. The proposed method is based on a collocated variable arrangement and especially adopted for unstructured grids consisting of ‘polyhedral’ calculation volumes. An inclusion of 23k in the pressure is analysed and the impact of such an approach on the employment of the constant static pressure boundary is addressed. It is shown that this approach allows a removal of a standard but cumbersome velocity–pressure –Reynolds stress coupling procedure known as an extension of Rhie‐Chow method (AIAA J. 1983; 21 : 1525–1532) for the Reynolds stresses. A novel wall treatment for the Reynolds‐stress equations and ‘polyhedral’ calculation volumes is presented. Important issues related to treatments of diffusion terms in momentum and Reynolds‐stress equations are also discussed and a new approach is proposed. Special interpolation practices implemented in a deferred‐correction fashion and related to all equations, are explained in detail. Computational results are compared with available experimental data for four very different applications: the flow in a two‐dimensional 180o turned U‐bend, the vortex shedding flow around a square cylinder, the flow around Ahmed Body and in‐cylinder engine flow. Additionally, the performance of the methodology is assessed by applying it to different computational grids. For all test cases, predictions with the second‐moment closure are compared to those of the k–εmodel. The second‐moment turbulence closure always achieves closer agreement with the measurements. A moderate increase in computing time is required for the calculations with the second‐moment closure. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
The uniqueness of solutions of the Navier-Stokes equations in the whole space is established when the velocity field is bounded and the pressure field is a BMO-valued locally integrable-in-time function for bounded initial data. Here the velocity field may not decay at space infinity. Although there are a few results concerning uniqueness without the decay assumption, our result is new and applicable for solutions constructed by solving the integral equations.  相似文献   

20.
A new flux vector splitting scheme has been suggested in this paper. This scheme uses the velocity component normal to the volume interface as the characteristic speed and yields the vanishing individual mass flux at the stagnation. The numerical dissipation for the mass and momentum equations also vanishes with the Mach number approaching zero. One of the diffusive terms of the energy equation does not vanish. But the low numerical diffusion for viscous flows may be ensured by using higher-order differencing. The scheme is very simple and easy to be implemented. The scheme has been applied to solve the one dimensional (1D) and multidimensional Euler equations. The solutions are monotone and the normal shock wave profiles are crisp. For a 1D shock tube problem with the shock and the contact discontinuities, the present scheme and Roe scheme give very similar results, which are the best compared with those from Van Leer scheme and Liou–Steffen's advection upstream splitting method (AUSM) scheme. For the multidimensional transonic flows, the sharp monotone normal shock wave profiles with mostly one transition zone are obtained. The results are compared with those from Van Leer scheme, AUSM and also with the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号